b
UNIVERSITAT
BERN

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Source

> The Unified Modeling Language Reference
Manual, James Rumbaugh, Ivar Jacobson and
Grady Booch, Addison Wesley, 1999.

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Use Case Diagrams

A use case is a generic
description of an entire
transaction involving several
actors.

A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.

Dependencies and
associations between use
cases may be indicated.

system name

—= Telephone Catalog

use case —

actor-use case
communication

/ AN\

Customer

establish
credit

use case name

actor

—

/

Salesperson

X

Shipping Clerk

h\ﬁ_‘____\‘

system boundary

Supervisor

Figure 5-1. Use case diagram

Using Use Case Diagrams

> “A use case is a snapshot of one aspect of your system.
The sum of all use cases is the external picture of your
system ...”
— UML Distilled

> “As use cases appear, assess their impact on the
domain model.”

— Use cases can drive domain modeling by highlighting the
important concepts.

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Scenarios

A scenario is an instance of a use case showing a typical
example of its execution.

Scenarios can be presented in UML using either sequence
diagrams or collaboration diagrams.

Note that a scenario only describes an example of a use
case, so conditionality cannot be expressed!

Sequence Diagrams

A sequence diagram
depicts a scenario by
showing the
iInteractions among a
set of objects in
temporal order.

Objects (not classes!)
are shown as vertical
bars. Events or
message dispatches
are shown as horizontal
(or slanted) arrows
from the sender to the
receiver.

outside actor

active object
: Kiosk

: Server : CreditService

insertCard (customer)

pickDate (date)

offer (seatChoice)

select (seats)

print (order)

message
submit (order)

OK

charge (customer,
amount)

authorize

lifeline (active)

Figure 8-1. Sequence diagram

Activations

Avoid returns in
sequence
diagrams
unless they add
Clarity.

4

an anonymous caller

jt\ creation object | :TicketDB :Account
— [
create() ord | !
mrder |Iifeline |
|
| |
message |
reserve (date,count) | |
™ |
debit (cost) |
activation *bonus (date,count)
[lrecursive call
————— —=
é _____
== — — — — — T |
return | |
R ¥4 | |
= /\ destruction

Figure 8-2. Sequence diagram with activations

Asynchrony and Constraints

. active
| caller exchange I | receiver |)
— I —_ objects

. lift receiver
constraints a
message
{b-a<1sec} dial tone
b
{c-b<10sec} dial digit
C
comment
The call is d
routed through ALl
the network. d message with duration
{d'-d< 5 sec} ringing tone phone rings
answer phone
At this point, —
the parties stop tone stop ringing
can talk. a | |

Figure 13-161. Sequence diagram with asynchronous control

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Collaboration Diagrams

Collaboration diagrams (called Communication diagrams in UML 2.0)
depict scenarios as flows of messages between objects:

classifier role
T request(order,customer) —m- 2: cost:=reserve(order) —m
. TicketDB
:OrderTaker T tickets LICKREIUD
requestor message flow\ association role
1: checkCredit(customer) + * 3: debit(customer,cost)
f\ credit \ one-way navigation

seqgquence number
: CreditBureau

Figure 8-3. Collaboration diagram

Message Labels

Messages from one object to another are labelled with text strings
showing the direction of message flow and information indicating
the message sequence.

1. Prior messages from other threads (e.g. “[A1.3, B6.7.1]")
— only needed with concurrent flow of control
2. Dot-separated list of sequencing elements

— sequencing integer (e.q., “3.1.2” is invoked by “3.1” and follows “3.1.1%)

— letter indicating concurrent threads (e.qg., “1.2a” and “1.2b”)

— iteration indicator (e.g., “1.17[i=1..n]’)

— conditional indicator (e.g., “2.3 [#items = 0]’)

Return value binding (e.g., “status :=")

Message name
— event or operation name

5. Argument list

& W

Nested Message Flows

operation being described

association

window

i redisplay() —s=

:Controller

invoker of operation

self-link for recursive calls

wire

‘Window

«parameterswindow

* 1: displayPositions(window)

—

1.1.2: create(rO,r1) —m=

+ 1.1*[i:=1..n]: drawSegment(i) C

wire: Wire

-

[ink
creation
* 1.1.3.1: link(self)

contents {new}

1.1.3: display(window) —

«local»line

= :Line {new}

/P «self»
iteration specifier

-1

local variable

message flow + 1.1.1a: 10 := position()

/

/ left: Bead

seqguence num ber

i

*1 1.1b: r1:=position()

right: Bead \ \

concurrent thread name

retum operation
value

object
created
during
operation

Figure 13-51. Collaboration diagram with message flows

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Statechart Diagrams

assign to subscription

initial state
timed out ctate
il lock h
[Available Locked
s~ unlock /
k transition
exchange

-

o
7

trigger event

Figure 3-5. Statechart diagram

Statechart Diagram Notation

A Statechart Diagram describes the temporal evolution of an object of a
given class in response to interactions with other objects inside or
outside the system.

An event is a one-way (asynchronous) communication from one object
to another:
— atomic (non-interruptible)

— includes events from hardware and real-world objects e.g., message
receipt, input event, elapsed time, ...

— notation: eventName(parameter: type, ...)
— may cause object to make a fransition between states

Statechart Diagram Notation ...

A state is a period of time during which an object is waiting
for an event to occur:
— depicted as rounded box with (up to) three sections:
— name — optional
— state variables — name: type = value (valid only for that state)
— triggered operations — internal transitions and ongoing operations
— may be nested

State Box with Regions

The entry event occurs whenever a transition is made into this state, and the
exit operation is triggered when a transition is made out of this state.

The help and character events cause internal transitions with no change of
state, so the entry and exit operations are not performed.

state name (- Enter Password h
L — entry / set echo to star; password.reset()
entry and exit actions | exit / set echo normal
— digit / handle character
internal transitions clear / password.reset()
- help / display help
LY 2

Figure 6-4. Internal transitions, and entry and exit actions

Transitions

A transition is an response to an external event received by
an object in a given state
— May invoke an operation, and cause the object to change state

— May send an event to an external object

— Transition syntax (each part is optional):
event(arguments) [condition]
/ Atarget.sendEvent operation(arguments)

— External transitions label arcs between states
— Internal transitions are part of the triggered operations of a state

Operations and Activities

An operation is an atomic action invoked by a transition
— Entry and exit operations can be associated with states

An activity is an ongoing operation that takes place while
object is in a given state

— Modelled as “internal transitions” labelled with the pseudo-event
do

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Nested Statecharts

Active (Timeout w
Ldo/ play messageJ

after (15 sec.)

dial digit(n)
[incomplete]

after (15 sec.)

(" DialTone) dial digit(n)

= : ~.| Dialing
lft | do/ play dial tone | digit(n)linvalid]
receiver dial digit(n)[valid]
/get dial tone (Invalid /connect

Ldo/ play messageJ (ConnTing]
busy
(Busy e

\ do/ play busy
callee tone
hangs up \/

p
. Ringing 1
Talking [=<< callee answers do/ play ringing toneJ
\. /

\ /enable speech

(1ae)

Pinned connected

callee

caller answers

hangs up
/disconnect

Figure 13-169. State diagram

Composite States

w S
Composite states may DA P CJ . NZ)
depicted either as high-level L u
or low-level views. r .%jie '@
()
“‘Stubbed transitions”

indicate the presence of
internal states:

may be abstracted as

Initial and terminal substates
are shown as black spots
and “bulls-eyes”

Figure 13-172. Stubbed transition

Sending Events between Objects

VCR toggle Power

toggle Power

: PR o : This signal turns the VCR off or on,
Each signal is directed to a specific object. toggle Powe | deper?ding on s current state.

I " "
Remote Control power” button
/send VCR.togglePower

i Thisisa

ConEFslllng text syntax.
You don't

need both

“power” button text %Dd

' /send television.togglePower graphic.

I togglePower This signal turmns the TV off or on,
depending on its current state.

Television toggle Power

toggle Power

Figure 13-160. Sending signals between objects

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Concurrent Substates

-

N

Taking Class

~

concurrent composite state

Incomplete N

normal
completion
transition

— concurrent thread

lab
lab done done
®o— Lab ab2
P Term project done @) final state of
Project one thread
Final pass =]
&= Test ®

fail |

abnormal exit

| Failed /I

Figure 6-6. State machine with concurrent composite state

Branching and Merging

Entering concurrent states:

Entering a state with concurrent substates means that each of the
substates is entered concurrently (one logical thread per substate).

Leaving concurrent states:

A labelled transition out of any of the substates terminates all of the
substates.

An unlabelled transition out of the overall state waits for all substates to
terminate.

(Completing a Course

|
SR
[}
|
|
! Not Up to 14 da
| Registered .~ __. - 1_before exam \
[Doing] ¢ X~ T == \
ExerCises : register ______ \\
| ! (ePub)) request \
complete exercises| ! Abmeldung «Nachprifung» ‘.
| 1
\ ! Reglstered J—/ S Failed /!
[Completed] ! for Exam don show up 1st Exam ,’
Exercises I \
: show up /
djust final grade | ! Wi derhol request
Adjust final grade « »
Justiindl g | fail eaermoiung «Nachprifung»
I Take
\ : Scheduled Within 3 wee% Abmeldung
insufficient @ ! Exam email Dozent
i ! Registered
exercises I ‘ QR
| or Repeat timeout
E pass [Take Repeat]é—-— show up Exam
timeout ! /Exam |
I , don't show up
/ | pass fail
_ N Z J
/ P d/ /
asse Failed
(Incomplete) [Course } Course }

Is it correct?

Roadmap

Use Case Diagrams
Sequence Diagrams
Collaboration (Communication) Diagrams

Statechart Diagrams
— Nested statecharts
— Concurrent substates

> Using UML

vV V V V

Perspectives

Three perspectives in drawing UML diagrams:

1. Conceptual
— Represent domain concepts
— Ignore software issues
2. Specification
— Focus on visible interfaces and behaviour
— Ignore internal implementation
3. Implementation

— Document implementation choices
— Most common, but least useful perspective(!)

— UML Distilled

Using the Notations

The diagrams introduced here complement class and object diagrams.

During Analysis:
— Use case, sequence and collaboration diagrams document use cases
and their scenarios during requirements specification

During Design:
— Sequence and collaboration diagrams can be used to document
implementation scenarios or refine use case scenarios

— State diagrams document internal behaviour of classes and must be
validated against the specified use cases

What you should know!

What is the purpose of a use case diagram?
Why do scenarios depict objects but not classes?
How can timing constraints be expressed in scenarios?

How do you specify and interpret message labels in a
scenario?

> How do you use nested state diagrams to model object
behaviour?

> What is the difference between “external”’ and “internal”
transitions?

> How can you model interaction between state diagrams
for several classes?

vV V V V

Can you answer the following questions?

> (Can a sequence diagram always be translated to an
collaboration diagram?

> Qr vice versa?

> Why are arrows depicted with the message labels rather
than with links?

> When should you use concurrent substates?

License

@creative
commons

C OMMONS DEED

Attribution-ShareAlike 3.0 Unported
You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
worKk).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The

best way to do this is with a link to this web page.
Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/3.0/

