
Introduction to Software Engineering!

13. Software Evolution!

Roadmap!

>  Lehmanʼs Laws of Software Evolution#
>  Forward and Reverse Engineering#
>  Reengineering Patterns#
>  The Moose software analysis platform#

© Oscar Nierstrasz#

ESE — Software Evolution#

2	

Literature!

© Oscar Nierstrasz#

ESE — Software Evolution#

3	

>  Demeyer, Ducasse, and Nierstrasz. Object-Oriented
Reengineering Patterns, Square Bracket Associates,
2008. #

http://scg.unibe.ch/download/oorp/#

Roadmap!

>  Lehmanʼs Laws of Software Evolution!
>  Forward and Reverse Engineering#
>  Reengineering Patterns#
>  The Moose software analysis platform#

© Oscar Nierstrasz#

ESE — Software Evolution#

4	

What is wrong with this picture?!

MY NEW DESIGN WILL
MEET ALL OF OUR

CUSTOMERS’ CURRENT
AND FUTURE NEEDS

ESE — Software Evolution#

© Oscar Nierstrasz#

ESE — Software Evolution#

6	

Lehmanʼs Laws!

Continuing change!
—  A program that is used in a real-world environment must

change, or become progressively less useful in that
environment.#

Increasing complexity!
—  As a program evolves, it becomes more complex, and extra

resources are needed to preserve and simplify its structure.#

Lehman, Belady. Program Evolution: Processes of Software
Change, London Academic Press, London, 1985#

© Oscar Nierstrasz# 7	

The Dilemma of Legacy Software!

A legacy system is a piece of software that:#
—  you have inherited, and#
—  is valuable to you.#

Symptoms!
—  Loss of knowledge#
—  Architecture & design drift#
—  Hard to make changes#
—  …#

You canʼt afford to throw it
out, but it is too expensive
to change!

ESE — Software Evolution#

© Oscar Nierstrasz# 8	

OO Legacy!

>  Object-oriented legacy systems are successful OO
systems whose architecture and design no longer
respond to changing requirements#

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.9	

Common Symptoms!

Lack of Knowledge!
>  obsolete or no documentation#
>  departure of the original

developers or users#
>  disappearance of inside

knowledge about the system#
>  limited understanding of entire

system#
!⇒ missing tests#

Process symptoms!
>  too long to turn things over to

production#
>  need for constant bug fixes#
>  maintenance dependencies#
>  difficulties separating products#
!⇒ simple changes take too
long!

Code symptoms!
•  duplicated code#
•  code smells!
!⇒ big build times!

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.10	

Common Problems!

Architectural Problems!
>  insufficient documentation 

= non-existent or out-of-date#
>  improper layering 

= too few or too many layers#
>  lack of modularity 

= strong coupling#
>  duplicated code 

= copy, paste & edit code#
>  duplicated functionality 

= similar functionality 
 by separate teams#

Refactoring opportunities!
>  misuse of inheritance  

= code reuse vs polymorphism#
>  missing inheritance  

= duplication, case-statements#
>  misplaced operations 

= operations outside classes#
>  violation of encapsulation  

= type-casting; C++ "friends"#
>  class abuse 

= classes as namespaces#

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.11	

Continuous Development!

17.4% Corrective!
(fixing reported errors)#

18.2% Adaptive!
(new platforms or OS)#

60.3% Perfective!
(new functionality)!

The bulk of the maintenance cost is due to new functionality!
⇒ even with better requirements, it is hard to predict new functions#

data from [Lien78a]!4.1% Other!

ESE — Software Evolution#

© Oscar Nierstrasz# 12	

cost#

time#

cost#

time#

The cost of change!

x 200#

We need to reduce the cost of change over time …!

— cf., XP Explained!

ESE — Software Evolution#

Roadmap!

>  Lehmanʼs Laws of Software Evolution#
>  Forward and Reverse Engineering!
>  Reengineering Patterns#
>  The Moose software analysis platform#

© Oscar Nierstrasz#

ESE — Software Evolution#

13	

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.14	

Some Terminology!

“Forward Engineering is the traditional process of moving from high-
level abstractions and logical, implementation-independent designs
to the physical implementation of a system.”#

“Reverse Engineering is the process of analyzing a subject system to
identify the systemʼs components and their interrelationships and
create representations of the system in another form or at a higher
level of abstraction.”#

“Reengineering ... is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form.”#

#— Chikofsky and Cross [in Arnold, 1993]!

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.15	

Goals of Reverse Engineering!

>  Cope with complexity#
—  need techniques to understand large, complex systems#

>  Generate alternative views#
—  automatically generate different ways to view systems#

>  Recover lost information#
—  extract what changes have been made and why#

>  Detect side effects#
—  help understand ramifications of changes#

>  Synthesize higher abstractions#
—  identify latent abstractions in software#

>  Facilitate reuse#
—  detect candidate reusable artifacts and components#

#— Chikofsky and Cross [in Arnold, 1993]#

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.16	

Reverse Engineering Techniques!

>  Redocumentation#
—  pretty printers#
—  diagram generators#
—  cross-reference listing generators#

>  Design recovery#
—  software metrics#
—  browsers, visualization tools#
—  static analyzers#
—  dynamic (trace) analyzers#

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.17	

Goals of Reengineering!

>  Unbundling#
—  split a monolithic system into parts that can be separately

marketed#
>  Performance#

—  “first do it, then do it right, then do it fast” — experience shows
this is the right sequence!#

>  Port to other Platform#
—  the architecture must distinguish the platform dependent

modules#
>  Design extraction#

—  to improve maintainability, portability, etc.#
>  Exploitation of New Technology#

—  i.e., new language features, standards, libraries, etc.#

ESE — Software Evolution#

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.18	

Reengineering Techniques!

>  Restructuring#
—  automatic conversion from unstructured to structured code#
—  source code translation#

— Chikofsky and Cross !
>  Data reengineering#

—  integrating and centralizing multiple databases#
—  unifying multiple, inconsistent representations#
—  upgrading data models#

— Sommerville, ch 32 !
>  Refactoring #

—  renaming/moving methods/classes etc.#

ESE — Software Evolution#

Roadmap!

>  Lehmanʼs Laws of Software Evolution#
>  Forward and Reverse Engineering#
>  Reengineering Patterns!
>  The Moose software analysis platform#

© Oscar Nierstrasz#

ESE — Software Evolution#

19	

© Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz# 1.20	

The Reengineering Life-Cycle!

Requirements!

Designs!

Code!

(0) requirement!
analysis!

(1) model!
capture!

(2) problem!
detection! (3) problem!

resolution!

(4) program transformation!

•  people centric#
•  lightweight#

ESE — Software Evolution#

© Oscar Nierstrasz# 21	

Reengineering Patterns!

In software engineering, a design pattern is a general
solution to a common problem in software design. A
design pattern isn't a finished design that can be
transformed directly into code; it is a description or
template for how to solve a problem that can be used in
many different situations. #

Reverse engineering patterns encode expertise and trade-offs in
extracting design from source code, running systems and people.#

— Even if design documents exist, they are typically out of sync with
reality.#

Reengineering patterns encode expertise and trade-offs in
transforming legacy code to resolve problems that have emerged.#

— These problems are typically not apparent in original design but are
due to architectural drift as requirements evolve!

ESE — Software Evolution#

© Oscar Nierstrasz# 22	

A Map of Reengineering Patterns!

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute
Responsibilities!

Transform Conditionals
to Polymorphism!

ESE — Software Evolution#

© Oscar Nierstrasz# 23	

Setting Direction!

Agree on Maxims!

Appoint a  
Navigator!

Speak to the!
Round Table!

Fix Problems, 
Not Symptoms!

If It Ain't Broke  
Don't Fix It!

Keep it Simple!

Set direction!

Maintain  
direction!

Coordinate  
direction!

Where to start!

What not to do!What to do!

How to do it!
Principles & Guidelines
for Software project
management especially
relevant for reengineering
projects	

Most Valuable First!

ESE — Software Evolution#

© Oscar Nierstrasz# 24	

Most Valuable First!

Problem: Which problems should you focus on first?#

Solution: Work on aspects that are most valuable to your
customer#

>  Maximize commitment, early results; build confidence#
>  Difficulties and hints:#

—  Which stakeholder do you listen to?#
—  What measurable goal to aim for?#
—  Consult change logs for high activity#
—  Play the Planning Game#
—  Wrap, refactor or rewrite? — Fix Problems, not Symptoms#

Vs. Fix the
Buggiest First?!

ESE — Software Evolution#

© Oscar Nierstrasz# 25	

First Contact!

System experts!

Chat with the  
Maintainers!

Interview 
during Demo!

Talk with  
developers!

Talk with!
end users!

Software System!

Read All the Code!
in One Hour!

Do a Mock  
Installation!

Read it! Compile it!

Skim the  
Documentation!

Talk about it!

Verify what 
you hear! Read

about it!

Feasibility assessment
(one week time)#

ESE — Software Evolution#

© Oscar Nierstrasz# 26	

Initial Understanding!

Top down!

Speculate about Design!

Recover
design!

Analyze the
Persistent Data!

Study the
Exceptional Entities!

Read it! Compile it!

Bottom up!

understand ⇒#
Obtain a higher-level model#

ESE — Software Evolution#

© Oscar Nierstrasz# 27	

Pattern: Study the Exceptional Entities!

Problem#
—  How can you quickly gain insight into complex software?#

Solution!
—  Measure software entities and study the anomalous ones#

Steps!
—  Use simple metrics#
—  Visualize metrics to get an overview#
—  Browse the code to get insight into the anomalies#

ESE — Software Evolution#

© Oscar Nierstrasz# 28	

System Complexity View!

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

Color
Metric

Position
Metrics

Width Metric

Height
Metric

ESE — Software Evolution#

© Oscar Nierstrasz# 29	

Detailed Model Capture!

Tie Code and Questions!

Refactor to Understand!
Keep track of!

your understanding!

Expose design!

Step through the Execution!

Look for the Contracts!

Learn from the Past!

Expose collaborations!

Expose contracts!

Expose evolution!

Write Tests!
to Understand!

Expose the design & make
sure it remains exposed!

•  Use Your Tools!
•  Look for Key Methods!
•  Look for Constructor Calls!
•  Look for Template/Hook Methods!
•  Look for Super Calls!

ESE — Software Evolution#

© Oscar Nierstrasz# 30	

Tests: Your Life Insurance!

Write Tests to Enable Evolution!

Grow Your Test 
Base Incrementally!

Managing tests!
Use a Testing!
Framework!

Test the Interface,!
Not the Implementation!

Record Business  
Rules as Tests!

Designing!
tests!

Write Tests!
to Understand!

•  Test Fuzzy features!
•  Test Old Bugs!
•  Retest Persistent Problems!

Regression Test 
after Every Change!

Migration Strategies!

ESE — Software Evolution#

© Oscar Nierstrasz# 31	

Migration!

Migrate Systems  
Incrementally!

Conserve  
Familiarity!

How!
Use Profiler!

before Optimizing!

Build Confidence!Involve the Users!
How! Why!Why!

Prototype the  
Target Solution!

Always Have a  
Running Version!

Regression Test!
after Every Change!

Present the  
Right Interface!

Distinguish Public!
from Published Interfaces!

Deprecate  
Obsolete Interfaces!

Make a Bridge!
to the New Town!

How!

Tests, your!
Life-Insurance!

Where to!

ESE — Software Evolution#

© Oscar Nierstrasz# 32	

Detecting Duplicated Code!

Compare Code Mechanically!

Visualize Code as Dotplots!

Redistribute
Responsibilities! Transform

Conditionals to
Polymorphism!

Detect!

Understand!

ESE — Software Evolution#

© Oscar Nierstrasz# 33	

Pattern: Visualize Code as Dotplots!

Problem!
—  How can you effectively identify significant duplication in a

complex software system?!
Solution!

—  Visualize the code as a dotplot, where dots represent
duplication.#

Steps!
—  Normalize the source files#
—  Compare files line-by-line#
—  Visualize and interpret the dotplots#

ESE — Software Evolution#

© Oscar Nierstrasz# 34	

File A

File A

File B

File B

Clone detection by string-matching!

Solid diagonals
indicate significant
duplication between
or within source files.	

ESE — Software Evolution#

© Oscar Nierstrasz# 35	

Dotplot Visualization!

Exact Copies Copies with Inserts/Deletes Repetitive

a b c d e f a b c d e f a b c d e fa b x y e f b c d e a b x y dc ea x b c x d e x f xg ha

 Variations Code Elements
(Helfman, 1995)

Sample Dot Configurations:!

ESE — Software Evolution#

© Oscar Nierstrasz# 36	

Redistribute Responsibilities!

Eliminate Navigation Code!

Data containers!

Monster client of!
data containers!

Split Up God Class!

Move Behaviour Close to Data!

Chains of data!
containers!

ESE — Software Evolution#

© Oscar Nierstrasz# 37	

High-level refactorings!

High-level refactorings
make use of many low-

level refactorings!

ESE — Software Evolution#

© Oscar Nierstrasz# 38	

Transform  
Self Type Checks!

Test provider!
type! Test self type! Test external!

attribute!

Transform  
Client Type Checks!

Transform Conditionals!
into Registration!

Test!
null values! Introduce  

Null Object!

Factor Out Strategy!

Factor Out State!

Test object state!

Transform Conditionals to Polymorphism!
ESE — Software Evolution#

Roadmap!

>  Lehmanʼs Laws of Software Evolution#
>  Forward and Reverse Engineering#
>  Reengineering Patterns#
>  The Moose software analysis platform!

© Oscar Nierstrasz#

ESE — Software Evolution#

39	

Moose — an extensible platform for software
and data analysis!

ESE — Software Evolution#

Import/export format for models#

Data parsing support #

 …more#

FAMIX meta-models family#

Smalltalk	

Naviga&on	
Metrics	
Querying	
Grouping	

Smalltalk	 	

Java	

C++	

COBOL	

…	

CDIF	

XMI	

External	
Parser	

CodeCrawler	

ConAn	 Van	 ...	 Hapax	

Extensible	 meta	 model	

Model	 repository	

Explicit metamodels enable change!

The	 Story	 of	 Moose:	 an	 Agile	 Reengineering	 Environment.	
Nierstrasz,	 Ducasse,	 Gîrba.	 ESEC/FSE	 2005	

ESE — Software Evolution#

Moose visualizations!
ESE — Software Evolution#

Programming visualizations with CodeCrawler!
ESE — Software Evolution#

Scripting visualizations with Mondrian!

Mondrian:	 An	 Agile	 Visualiza&on	 Framework.	
Meyer,	 Gîrba,	 Lungu.	 SoYVis	 2006	

ESE — Software Evolution#

Data navigation through generic or dedicated
browsers!

ESE — Software Evolution#

Scripting browsers with Glamour!
ESE — Software Evolution#

Scripting browsers with Glamour!
ESE — Software Evolution#

Moose — a platform for collaborative research!
ESE — Software Evolution#

Roadmap!

>  Lehmanʼs Laws of Software Evolution#
>  Forward and Reverse Engineering#
>  Reengineering Patterns#
>  The Moose software analysis platform#

© Oscar Nierstrasz#

ESE — Software Evolution#

49	

Conclusion!

>  Valuable software inevitably changes#
>  Reverse and reengineering are necessary activities

throughout the lifecycle of a software system#
>  Simple techniques go a long way#

© Oscar Nierstrasz#

ESE — Software Evolution#

50	

What you should know!!

>  What is Lehmanʼs Laws of Continuing Change?#
>  Why do software systems become more complex over

time?#
>  Why is duplicated code considered to be a bad code

smell?#
>  How can you reduce the cost of software maintenance?#
>  What is meant by “reverse engineering”?#
>  How can studying exceptional entities help you to

understand a software system?#

© Oscar Nierstrasz#

ESE — Software Evolution#

51	

Can you answer the following questions?!

>  Is a legacy software system a good thing or a bad thing
to have?#

>  How can you ensure that documentation stays in sync
with implementation?#

>  When should you start a reengineering project?#
>  What are the dangers of trying to fix the buggiest code

first?#

© Oscar Nierstrasz#

ESE — Software Evolution#

52	

License!

© Oscar Nierstrasz#

ESE — Software Evolution#

Attribution-ShareAlike 3.0 Unported!
You are free:#

to Share — to copy, distribute and transmit the work#
to Remix — to adapt the work#

Under the following conditions:#
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).#
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.#

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.#

Any of the above conditions can be waived if you get permission from the copyright holder.#
Nothing in this license impairs or restricts the author's moral rights.#

http://creativecommons.org/licenses/by-sa/3.0/
53	

