
4. GOOD: Good Object Oriented Design

Introduction to Software Engineering

Mircea F. Lungu

Based on a lecture by Oscar Nierstrasz.



2

Bibliography

> Designing Object-Oriented Software, R. Wirfs-Brock, B. 
Wilkerson, L. Wiener, Prentice Hall, 1990.

> The Early History of Smalltalk, A. Kay, In History of Programming 
Languages, 1993

> Design Principles and Design Patterns, R.C. Martin, 2000

> Object-Oriented Design Heuristics, A.Riel, 2000

> Ten things I hate about OOP, Oscar Nierstrasz, JOT, 2010

> The Power of Interoperability: Why Objects Are Inevitable, J. 
Aldrich, Onward! 2013

>



Roadmap

3

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> Object-oriented design principles



4

Object-Oriented Decomposition

Decompose according to the objects a 
system is supposed to manipulate.



5

Design is not algorithmic



Expertise matters

6

A good sense of style often helps produce clean, 
elegant designs



Alan Kay on OO

7

What I got from Simula was that you could now replace 
bindings and assignment with goals. [...] the objects 
should be presented as sites of higher level behaviors 
more appropriate for use as dynamic components.



Responsibility-Driven Design

8

Every “object would be a server offering services” that 
are accessed via messages to the object.

A. Kay



9

RDD Steps

1. Find the classes in your system

2. Determine the responsibilities of each class

3. Determine how objects collaborate with each other to 
fulfill their responsibilities

4. Factor common responsibilities to build class hierarchies



Roadmap

10

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> Object-oriented design principles



11

Finding Classes

Start with requirements specification:
! What are the goals of the system being designed, its 

expected inputs and desired responses?



12

Drawing Editor Requirements Specification

The drawing editor is an interactive graphics editor. With it, 
users can create and edit drawings composed of lines, 
rectangles, ellipses and text.

Tools control the mode of operation of the editor. Exactly 
one tool is active at any given time.

Two kinds of tools exist: the selection tool and creation 
tools. When the selection tool is active, existing drawing 
elements can be selected with the cursor. One or more 
drawing elements can be selected and manipulated; if several 
drawing elements are selected, they can be manipulated as if 
they were a single element. Elements that have been selected 
in this way are referred to as the current selection. The current 
selection is indicated visually by displaying the control points 
for the element. Clicking on and dragging a control point 
modifies the element with which the control point is 
associated.

When a creation tool is active, the current selection is 
empty. The cursor changes in different ways according to the 
specific creation tool, and the user can create an element of 
the selected kind. After the element is created, the selection 
tool is made active and the newly created element becomes 
the current selection.

The text creation tool changes the shape of the cursor to 
that of an I-beam. The position of the first character of text is 
determined by where the user clicks the mouse

button. The creation tool is no longer active when the user 
clicks the mouse button outside the text element. The control 
points for a text element are the four corners of the region 
within which the text is formatted. Dragging the control points 
changes this region. The other creation tools allow the 
creation of lines, rectangles and ellipses. They change the 
shape of the cursor to that of a crosshair. The appropriate 
element starts to be created when the mouse button is 
pressed, and is completed when the mouse button is 
released. These two events create the start point and the 
stop point.
The line creation tool creates a line from the start point to the 
stop point. These are the control points of a line. Dragging a 
control point changes the end point.
The rectangle creation tool creates a rectangle such that 
these points are diagonally opposite corners. These points 
and the other corners are the control points. Dragging a 
control point changes the associated corner.
The ellipse creation tool creates an ellipse fitting within the 
rectangle defined by the two points described above. The 
major radius is one half the width of the rectangle, and the 
minor radius is one half the height of the rectangle. The 
control points are at the corners of the bounding rectangle. 
Dragging control points changes the associated corner.



Let’s find classes (a collabortive slide)

> IDrawingElement: Line, Ellipsis, Text, Bounding Box, 
> Selection
> ATools: SelectionTool, CreationTool 
> A/I-CreationTool: LineCreationTool, ...
> Point

13



14

Finding Classes ...

1. Look for noun phrases
— separate into obvious classes, uncertain candidates, and 

nonsense 
2. Refine to a list of candidate classes



15

Drawing Editor: noun phrases

The drawing editor is an interactive graphics editor. With it, users 
can create and edit drawings composed of lines, rectangles, 
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool 
is active at any given time.

Two kinds of tools exist: the selection tool and creation tools. 
When the selection tool is active, existing drawing elements can be 
selected with the cursor. One or more drawing elements can be 
selected and manipulated; if several drawing elements are selected, 
they can be manipulated as if they were a single element. Elements 
that have been selected in this way are referred to as the current 
selection. The current selection is indicated visually by displaying 
the control points for the element. Clicking on and dragging a 
control point modifies the element with which the control point is 
associated.

…



...

When a creation tool is active, the current selection is empty. 
The cursor changes in different ways according to the specific 
creation tool, and the user can create an element of the selected 
kind. After the element is created, the selection tool is made 
active and the newly created element becomes the current 
selection.

The text creation tool changes the shape of the cursor to that of 
an I-beam. The position of the first character of text is determined 
by where the user clicks the mouse button. The creation tool is 
no longer active when the user clicks the mouse button outside 
the text element. The control points for a text element are the four 
corners of the region within which the text is formatted. Dragging 
the control points changes this region. The other creation tools 
allow the creation of lines, rectangles and ellipses. They change 
the shape of the cursor to that of a crosshair. The appropriate 
element starts to be created when the mouse button is pressed, 
and is completed when the mouse button is released. These two 
events create the start point and the stop point.



The line creation tool creates a line from the start point to the 
stop point. These are the control points of a line. Dragging a 
control point changes the end point.

The rectangle creation tool creates a rectangle such that these 
points are diagonally opposite corners. These points and the 
other corners are the control points. Dragging a control point 
changes the associated corner.

The ellipse creation tool creates an ellipse fitting within the 
rectangle defined by the two points described above. The major 
radius is one half the width of the rectangle, and the minor radius 
is one half the height of the rectangle. The control points are at 
the corners of the bounding rectangle. Dragging control points 
changes the associated corner.



18

Class Selection Rationale

Look for physical objects:
—mouse button [event or attribute]

Model conceptual entities:
—ellipse, line, rectangle
—Drawing, Drawing Element
—Tool, Creation Tool, Ellipse Creation Tool, Line Creation 

Tool, Rectangle Creation Tool, Selection Tool, Text Creation 
Tool

—text, Character
—Current Selection



19

Class Selection Rationale ...

Choose one word for one concept:
—Drawing Editor ⇒

 editor, interactive graphics editor
—Drawing Element ⇒ element
—Text Element ⇒ text
—Ellipse Element, Line Element, Rectangle Element 
⇒ ellipse, line, rectangle



20

Class Selection Rationale ...

Be wary of adjectives:
—Ellipse Creation Tool, Line Creation Tool, Rectangle 

Creation Tool, Selection Tool, Text Creation Tool
– all have different requirements

—bounding rectangle, rectangle, region ⇒ Rectangle
– common meaning, but different from Rectangle Element

—Point ⇒ end point, start point, stop point
—Control Point

–more than just a coordinate
—corner ⇒ associated corner, diagonally opposite corner

– no new behaviour



21

Class Selection Rationale ...

Be wary of sentences with missing or misleading subjects:
—“The current selection is indicated visually by displaying 

the control points for the element.” 
– by what? Assume Drawing Editor ...

Model categories:
—Tool, Creation Tool

Model interfaces to the system: — no good candidates 
here ...
—user — don’t need to model user explicitly
—cursor — cursor motion handled by operating system 



22

Class Selection Rationale ...

Model values of attributes, not attributes themselves:
—height of the rectangle, width of the rectangle
—major radius, minor radius 
—position — of first text character; probably Point attribute
—mode of operation — attribute of Drawing Editor
—shape of the cursor, I-beam, crosshair — attributes of 

Cursor
—corner — attribute of Rectangle
—time — an implicit attribute of the system



23

Candidate Classes

Character Line Element
Control Point Point
Creation Tool Rectangle 
Current Selection Rectangle Creation Tool
Drawing Rectangle Element
Drawing Editor Selection Tool
Drawing Element Text Creation Tool
Ellipse Creation Tool Text Element 
Ellipse Element Tool
Line Creation Tool

Preliminary analysis yields the following candidates:

Expect the list to evolve 
as design progresses.



Roadmap

24

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> SOLID object-oriented design principles



25

CRC Cards

Use CRC cards to record candidate classes:
!

Record the candidate Class Name and superclass (if known)
Record each Responsibility and the Collaborating classes

—compact, easy to manipulate, easy to modify or discard!
—easy to arrange, reorganize
—easy to retrieve discarded classes

Text Creation Tool subclass of Tool
Editing Text Text Element



26

CRC Sessions

CRC cards are a tool to explore possible designs

—Prepare a CRC card for each candidate class
—Get a team of Developers to sit around a table and distribute the 

cards to the team
—The team walks through scenarios, playing the roles of the classes.

This exercise will uncover:
—unneeded classes and responsibilities
—missing classes and responsibilities



Roadmap

27

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> SOLID object-oriented design principles



28

What are object responsibilities?

—the knowledge an object maintains and provides
—the actions it can perform



29

Identifying Responsibilities

> Study the requirements specification:
—highlight verbs and determine which represent responsibilities
—perform a walk-through of the system

– explore as many scenarios as possible
– identify actions resulting from input to the system

> Study the candidate classes:
—class names ⇒ roles ⇒ responsibilities
—recorded purposes on class cards ⇒ responsibilities



How to assign responsibilities?



Assigning Responsibilities: Be lazy

31

“Don't do anything you can push off to someone else.” 
(Pelrine)



Assigning Responsibilities: Be tough

32

“Don't let anyone else play with your toys”. 
(Pelrine)



33

Assigning Responsibilities: Be socialist

Evenly distribute system intelligence



Assigning Responsibilities

State responsibilities as generally as possible

34



Assigning Responsibilities

Keep behaviour together with any related information
—principle of encapsulation

35



36

Assigning Responsibilities ...

Keep information about one thing in one place
— if multiple objects need access to the same information

1. a new object may be introduced to manage the information, or
2. one object may be an obvious candidate, or
3. the multiple objects may need to be collapsed into a single one



Roadmap

37

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> SOLID object-oriented design principles



38

Relationships Between Classes

> Drawing element is-part-of Drawing

> Drawing Element has-knowledge-of Control Points

> Rectangle Tool is-kind-of Creation Tool



39

Relationships Between Classes

> The “Is-Kind-Of” Relationship:
—classes sharing a common attribute often share a common 

superclass
—common superclasses suggest common responsibilities

e.g., to create a new Drawing Element, a Creation Tool must:
1. accept user input — implemented in subclass
2. determine location to place it — generic
3. instantiate the element – implemented in subclass



Relationships Between Classes

> The “Is-Part-Of” Relationship:
—distinguish (don’t share) responsibilities of part and of whole

40



41

Relationships Between Classes ...

> The “Is-Analogous-To” Relationship:
—similarities between classes suggest as-yet-undiscovered 

superclasses

Difficulties in assigning responsibilities suggest:
—missing classes in design, or — e.g., Group Element 
—free choice between multiple classes



42

Collaborations

What are collaborations?

> collaborations are client requests to servers needed to 
fulfill responsibilities

> collaborations reveal control and information flow and, 
ultimately, subsystems

> can uncover missing responsibilities
> analysis of communication patterns can reveal 

misassigned responsibilities



43

Finding Collaborations

For each responsibility:
1. Can the class fulfill the responsibility by itself?
2. If not, what does it need, and from what other class can it obtain 

what it needs?

For each class:
1. What does this class know?
2. What other classes need its information or results? Check for 

collaborations.
3. Classes that do not interact with others should be discarded. 

(Check carefully!)



44

Listing Collaborations

DrawingDrawing

Knows which elements it contains

Maintains order of elements Drawing Element



Roadmap

45

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> SOLID object-oriented design principles



46

Finding Abstract Classes

> group related classes with common attributes
> introduce abstract superclasses to represent the group
> “categories” are good candidates for abstract classes

Abstract classes factor out common behaviour shared by other classes

Warning: beware of premature classification; your 
hierarchy will evolve!

Tool

Creation ToolSelection Tool

Ellipse Tool Line Tool Rectangle Tool Text Tool



Tool
{ abstract }

Creation Tool
{ abstract }Selection Tool

ToolSelection Tool Creation Tool

47

Sharing Responsibilities

Concrete classes may be both 
instantiated and inherited from.
Abstract classes may only be 
inherited from.

Note on class cards and on class 
diagram.

Venn Diagrams can be used to 
visualize shared responsibilities.
(Warning: not part of UML!)



48

Building Good Hierarchies

Model a “kind-of” hierarchy:
> Subclasses should support all inherited responsibilities, 

and possibly more

Factor common responsibilities as high as possible:
> Classes that share common responsibilities should inherit 

from a common abstract superclass; introduce any that 
are missing



49

Building Good Hierarchies …

Abstract classes do not inherit from concrete classes:
> Eliminate by introducing common abstract superclass: 

abstract classes should support responsibilities in an 
implementation-independent way

Eliminate classes that do not add functionality:
> Classes should either add new responsibilities, or a 

particular way of implementing inherited ones



Drawing Element
{ abstract }

Text 
Element

Line 
Element

Ellipse 
Element

Rectangle 
Element

Group 
Element

Drawing Element
{ abstract }

Text 
Element

Line 
Element

Ellipse 
Element

Rectangle 
Element

Group 
Element

Linear Element
{ abstract }

50

Refactoring Responsibilities

Lines, Ellipses and 
Rectangles are 
responsible for 
keeping track of the 
width and colour of the 
lines they are drawn 
with.
This suggests a 
common superclass.



Roadmap

> Responsibility-Driven Design
— Finding Classes
— [ CRC sessions ]
— Identifying Responsibilities
— Finding Collaborations
— Structuring Inheritance Hierarchies

> SOLID object-oriented design principles

51



52

SOLID (object-oriented design principles)

Robert C. Martin. Design Principles and Design Patterns. 2000. 
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

Concerns: Rigidity, 
fragility, immobility, 
viscosity (!)

> Single responsibility
> Open-closed
> Liskov substitution
> Interface segregation
> Dependency inversion

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf


Single responsibility principle (Read!)

53

Every class should have a single responsibility

Robert C. Martin. SRP: The Single Responsibility Principle. 2000. 
http://www.objectmentor.com/resources/articles/srp.pdf (!)

There should never be more than 
one reason for a class to change

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf


Open/closed principle

54

Bertrand Meyer, Object-Oriented Software Construction, 1988.
See also: http://www.objectmentor.com/resources/articles/ocp.pdf

Software entities should be open for 
extension, but closed for modification.

“In other words, we want to be able to 
change what the modules do, without 
changing the source code of the modules.”

http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf


Liskov substitution principle

55

Restated in terms of contracts, a derived class is substitutable 
for its base class if:
• Its preconditions are no stronger than the base class method.
• Its postconditions are no weaker than the base class method. 

(Instances of) subclasses should be substitutable 
for (instances of) their base classes. 

Barbara Liskov, Jeannette M. Wing. A behavioral notion of 
subtyping. ACM TOPLAS, 1994.
http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf

Peter Wegner, Stanley Zdonik. Inheritance as an Incremental 
Modification Mechanism or What Like Is and Isn't Like. ECOOP 1988.
http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm

http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf
http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf
http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm
http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm


Interface segregation principle

56

Clients should not be forced to depend 
upon interfaces that they don't use.

Robert C. Martin,The Interface Segregation Principle, C++ Report, June 1996.
http://www.objectmentor.com/resources/articles/isp.pdf

Many client-specific interfaces are better 
than one general purpose interface.

http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf


Dependency inversion principle (Read!!)

57

High-level modules should not depend on low-level 
modules. Both should depend on abstractions.

Abstractions should not depend upon details. 
Details should depend upon abstractions.

Robert C. Martin, The Dependency Inversion Principle. C++ Report, May 1996.
http://www.objectmentor.com/resources/articles/dip.pdf

Depend upon abstractions. 
Do not depend upon concretions.

http://www.objectmentor.com/publications/dip.pdf
http://www.objectmentor.com/publications/dip.pdf


58

To read!



Design is iterative

59

There is no great writing, only great rewriting.
L. Brandeis



60

What you should know!

> What criteria can you use to identify potential classes?
> How can CRC cards help during analysis and design?
> How can you identify abstract classes?
> What are class responsibilities, and how can you identify them?
> How can identification of responsibilities help in identifying classes?
> What are collaborations, and how do they relate to responsibilities?
> How can you identify abstract classes?
> What criteria can you use to design a good class hierarchy?
> How can refactoring responsibilities help to improve a class 

hierarchy?



61

Can you answer the following questions?

> When should an attribute be promoted to a class?
> Why is it useful to organize classes into a hierarchy?
> How can you tell if you have captured all the 

responsibilities and collaborations?
> What use is multiple inheritance during design if your 

programming language does not support it?



http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or 
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

