
7. Verification

Introduction to Software Engineering

Mircea F. Lungu

Based on a lecture by Oscar Nierstrasz.

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

2

3

Software Reliability

The reliability of a software system is a measure of how
well it provides the services expected by its users,
expressed in terms of software failures.

Failures vs. Faults

A software failure is an execution event where the
software behaves in an unexpected or undesirable way.

A software fault is an erroneous portion of software
which may cause failures to occur if it is run in a particular
state, or with particular inputs.

4

Therac-25
Intel Pentium

NASA Mars Mission

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

6

7

Common Sources of Software Faults ...

Concurrency is dangerous because timing differences can
affect overall program behaviour in hard-to-predict ways.
—Minimize inter-process dependencies

Recursion can lead to convoluted logic, and may exhaust
(stack) memory.
—Use recursion in a disciplined way, within a controlled scope

Floating point numbers are inherently imprecise and may lead to
invalid comparisons.
—Fixed point numbers are safer for exact comparisons

8

What to do with Faults?

Fault tolerance
developing programs that will operate despite the presence of faults

Fault avoidance
development techniques to reduce the number of faults in a system

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

9

10

Approaches to Hardware Fault Tolerance

Distributed Systems
The Internet

11

Approaches to Software Fault Tolerance

N-version Programming. Multiple versions of the software
system are implemented independently by different teams.

—runs all the versions in parallel
—compares their results using a voting system, and
—rejects inconsistent outputs

(n > 3 && n % 2 !=0)

12

Defensive Programming

Use the type system to ensure that variables do not get
assigned invalid values.

Use assertions to detect failures and raise exceptions. Explicitly
state and check all invariants for abstract data types, and pre-
and post-conditions of procedures as assertions.

Use exception handlers to recover from failures.

Example: Fault Recovery

> Change logs (rollback and replay)
—Smalltalk image and changes

> Transactional Memory (software and hardware)
—ACID (Atomicy, Consistency, Isolation, Durability)

13

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

14

15

Fault Avoidance Can Benefit From ...

1. Formal proofs that certain properties hold
2. Code reviews during the development process
3. System testing to expose faults and assess reliability

16

Fault Avoidance Can Benefit From ...

4. A more zen approach to writing software

Formal Verification

Mathematically-based. Use mathematical reasoning to
demonstrate that program meets specification
—e.g., that invariants are not violated
—e.g., model-checking tools

17

18

Static Verification

Program Inspections:
> Small team systematically checks program code
> Inspection checklist often drives this activity

—e.g., “Are all invariants, pre- and post-conditions checked?” ...

Static Program Analyzers:
> Complements compiler to check for common errors

—e.g., variable use before initialization

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

19

20

Testing vs. Correctness

“Program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for
showing their absence.”

— Edsger Dijkstra, The Humble Programmer, ACM Turing lecture, 1972

Tests are designed to reveal the presence of defects in the system.

21

Testing In Practice

Testing in practice can only be representative.

Test data are inputs devised to test the system.

Test cases are input/output specifications for a particular
function being tested.

22

The Testing Process

1. Unit testing:
— Individual (stand-alone) components are tested to ensure

that they operate correctly.
2. Module testing:

—A collection of related components (a module) is tested as
a group.

3. Sub-system testing:
—The phase tests a set of modules integrated as a sub-

system. Since the most common problems in large
systems arise from sub-system interface mismatches, this
phase focuses on testing these interfaces.

23

The Testing Process ...

4. System testing:
—This phase concentrates on (i) detecting errors resulting

from unexpected interactions between sub-systems, and
(ii) validating that the complete systems fulfils functional
and non-functional requirements.

5. Acceptance testing (alpha/beta testing):! !
—The system is tested with real rather than simulated data.

24

Bottom-up Testing

> Start by testing units and modules
> Test drivers must be written to exercise lower-level

components
> Works well for reusable components to be shared with other

projects

Bottom-up testing will not uncover architectural faults

25

Top-down Testing

> Start with sub-systems, where modules are represented by
“stubs” / mocks

> Similarly test modules, representing functions as stubs
> Coding and testing are carried out as a single activity
> Design errors can be detected early on, avoiding expensive

redesign
> Always have a running (if limited) system!

BUT: may be impractical for stubs to simulate complex
components

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

26

class BinSearch {
// This is an encapsulation of a binary search function that takes an array of
// ordered objects and a key and returns an object with 2 attributes namely
// index - the value of the array index
// found - a boolean indicating whether or not the key is in the array
// An object is returned because it is not possible in Java to pass basic types by
// reference to a function and so return two values
// the key is -1 if the element is not found
! public static void search (int key, int [] elemArray, Result r)
! {
! ! int bottom = 0;
! ! int top = elemArray.length - 1;
! ! int mid;
! ! r.found = false; r.index = -1;! ! ! ! (1)
! ! while (bottom <= top)! ! ! ! ! (2)
! ! {
! ! ! mid = (top + bottom) / 2;
! ! ! if (elemArray [mid] == key)! ! ! ! (3)
! ! ! {
! ! ! ! r.index = mid;!! ! ! ! (8)
! ! ! ! r.found = true;
! ! ! ! return ;! ! ! ! ! -> (9)
! ! ! } // if part
! ! ! else
! ! ! {
! ! ! ! if (elemArray [mid] < key)! ! ! (4)
! ! ! ! ! bottom = mid + 1;! ! ! (5)
! ! ! ! else
! ! ! ! ! top = mid -i;! ! ! (6)
! ! ! }! ! ! ! ! ! (7)
! ! } //while loop
! } //search! ! ! ! ! ! (9)
} //BinSearch

© Ian Sommerville 2000

28

Structural (white box) Testing

Structural testing treats a component as a “white box” or “glass box”
whose structure can be examined to generate test cases.
Derive test cases to maximize coverage of that structure, yet minimize
the number of test cases.

© Ian Sommerville 2000

Test data

Test outputsComponent
code

Tests Derives

29

Program flow graphs

> Each branch is shown as a separate path and loops are
shown by arrows looping back to the loop condition node

> The number of tests to test all control
statements equals the cyclomatic complexity

Cyclomatic complexity = Number of edges - Number of nodes +2

30

Path Testing

Test cases should be
chosen to cover all
independent paths
through a routine:
—1, 2, 9
—1, 2, 3, 8, 9
—1, 2, 3, 4, 5, 7, 2, 9
—1, 2, 3, 4, 6, 7, 2, 9

(Each path traverses at
least one new edge)

31

Coverage criteria

> every statement at least once
> all portions of control flow at least once
> all possible values of compound conditions at least once
> all portions of data flow at least once
> for all loops L, with n allowable passes:

I. skip the loop;
II.1 pass through the loop
III.2 passes
IV.m passes where 2 < m < n
V.n-1, n, n+1 passes

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

32

33

Functional (black box) testing

© Ian Sommerville 2000

Functional testing
treats a component as
a “black box” whose
behaviour can be
determined only by
studying its inputs and
outputs.

Inputs causing
anomalous
behaviour

Outputs
which reveal
the presence
of defects

Input test data I

Output test results Oe

System

34

Equivalence partitioning

public static void search(int key, int [] elemArray, Result r)
! { … }

Check input partitions:
> Do the inputs fulfil the pre-conditions?

— is the array sorted, non-empty ...
> Is the key in the array?

— leads to (at least) 2x2 equivalence classes

Check boundary conditions:
> Is the array of length 1?
> Is the key at the start or end of the array?

— leads to further subdivisions (not all combinations make sense)

35

Test Cases and Test Data

Generate test data that cover all meaningful equivalence partitions.

Test Cases Test Data
Array length 0 key = 17, elements = { }
Array not sorted key = 17, elements = { 33, 20, 17, 18 }
Array size 1, key in array key = 17, elements = { 17 }
Array size 1, key not in array key = 0, elements = { 17 }
Array size > 1, key is first element key = 17, elements = { 17, 18, 20, 33 }

Array size > 1, key is last element key = 33, elements = { 17, 18, 20, 33 }

Array size > 1, key is in middle key = 20, elements = { 17, 18, 20, 33 }
Array size > 1, key not in array key = 50, elements = { 17, 18, 20, 33 }
......

36

Coverage Criteria

Test cases are derived from the external specification of the
component and should cover:

> all exceptions
> all data ranges (incl. invalid) generating different classes of

output
> all boundary values

Test cases can be derived from a component’s interface, by
assuming that the component will behave similarly for all
members of an equivalence partition ...

Roadmap

Why Verification Matters
Sources of Faults
Tolerance
Avoidance via Verification
Testing
—White box
—Black box
—Regression

37

38

Regression testing

Regression testing means testing that everything that
used to work still works after changes are made to
the system!

“Testing old capabilities is more important than testing new
capabilities.”

39

What you should know

> Failures, Faults, and Reliability
> Test cases vs. test data
> How to do black-box testing
> How to do white-box testing
> What is regression testing and why it matters
> How to design an OO system that is testable

40

Can you answer the following questions?

> When would you combine black-box testing with white-box testing?
> Is it acceptable to deliver a system that is not 100% reliable?
> What is the goal of path testing?
> Why is regression testing important?
> How can we increase the chance that a system avoids failures?

41

Further Reading / Watching

The Clean Code Talks -- Unit Testing (Google Tech Talk)

Software Engineering, Chapter 7, I. Sommerville, 9th
Edn., 2011.

http://www.youtube.com/watch?v=wEhu57pih5w
http://www.youtube.com/watch?v=wEhu57pih5w

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

