
Oscar Nierstrasz

2. Object-Oriented Design Principles

Roadmap

2

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Roadmap

3

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Motivation

4

The law of continuing change:
A large program that is used undergoes continuing
change or becomes progressively less useful.
The change process continues until it is judged
more cost-effective to replace the system with a
recreated version.

— Lehman and Belady, 1985

What should design optimize?

5

Enable small, incremental changes by designing software
around stable abstractions and interchangeable parts.

How do we find the “right” design?

6

Object-oriented design is an iterative and exploratory process

Don’t worry if your initial design is ugly.
If you apply the OO design principles
consistently, your final design will be beautiful!

7

Running Example: Snakes and Ladders

http://en.wikipedia.org/wiki/Snakes_and_ladders

Game rules

> Players
— Snakes and Ladders is played by two to four players, each with her own

token to move around the board.
> Moving

— Players roll a die or spin a spinner, then move the designated number of
spaces, between one and six. Once they land on a space, they have to
perform any action designated by the space.

> Ladders
— If the space a player lands on is at the bottom of a ladder, he should climb the

ladder, which brings him to a space higher on the board.
> Snakes

— If the space a player lands on is at the top of a snake, she must slide down
to the bottom of it, landing on a space closer to the beginning.

> Winning
— The winner is the player who gets to the last space on the board first,

whether by landing on it from a roll, or by reaching it with a ladder.
8http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html

http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html
http://www.ehow.com/facts_5163203_snakes-amp-ladders-rules.html

Variations

> A player who lands on an occupied square must go back
to the start square.

> If you roll a number higher than the number of squares
needs to reach the last square, you must continue
moving backwards.

> …

9

Roadmap

10

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Players

Game Board

Start Square

Square End SquareSnake

Die
Ladder

Programming is modeling

11

Model domain objects

What about roll, action, winner … ?

Everything is an object

12

Every domain concept that plays a role in the
application and assumes a responsibility is a
potential object in the software design

“Winner” is just a state of a player
— it has no responsibility of its own.

Computation is simulation

13

“Instead of a bit-grinding processor … plundering
data structures, we have a universe of well-
behaved objects that courteously ask each
other to carry out their various desires.”

— Ingalls 1981

Square

FirstSquare LastSquare Snake Ladder

Model specialization

14

The first square is a kind of square, so model it as such

Is a snake a kind of reverse ladder?

Roadmap

15

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Responsibility-Driven Design

16

• What actions is this object responsible for?
• What information does this object share?

Well-designed objects have clear responsibilities

Drive design by asking:

Responsibility-driven design ... minimizes the
rework required for major design changes.

— Wirfs-Brock, 1989

Snakes and Ladders responsibilities

17

Die
• provides a random

number from 1 to 6

Game
• keeps track of the game state

Player
• keeps track of where it is
• moves over squares of the

board
Square

• keeps track of any player on it

First Square
• can hold multiple players Last Square

• knows it is the winning square
Snake

• sends a player back to
an earlier square

Ladder
• sends a player ahead to

a later square

The Single Responsibility Principle

18
http://en.wikipedia.org/wiki/Single_responsibility_principle

An object should have no more than one key responsibility.

If an object has several, unrelated responsibilities,
then you are missing objects in your design!

The different kinds of squares have
separate responsibilities, so they must
belong to separate classes!

Top-down decomposition

19

Use concrete scenarios to drive interface design

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

jack = new Player("Jack");
jill = new Player("Jill");
Player[] args = { jack, jill };
Game game = new Game(12, args);
game.setSquareToLadder(2, 4);
game.setSquareToLadder(7, 2);
game.setSquareToSnake(11, -6);
assertTrue(game.notOver());
assertTrue(game.firstSquare().isOccupied());
assertEquals(1, jack.position());
assertEquals(1, jill.position());
assertEquals(jack, game.currentPlayer());

game.movePlayer(4);
assertTrue(game.notOver());
assertEquals(5, jack.position());
assertEquals(1, jill.position());
assertEquals(jill, game.currentPlayer());

Jack makes a move

20

game

movePlayer(4) remove()

jack

jackplayers

moveFwd(4) leave(jack)

moveAndLand(4)

square1

findSquare(4)

isOccupied()

enter(jack)

add(jack)

square()
square5

square5

isLastSquare()
false

square5
landHereOrGoHome()

square5square5

Roadmap

21

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Separate interface and implementation

22

Information hiding: a component should provide all and
only the information that the user needs to effectively use it.

http://en.wikipedia.org/wiki/Information_hiding

Information hiding protects both the provider and
the client from changes in the implementation.

Abstraction, Information Hiding and
Encapsulation

23

Abstraction = elimination of inessential detail

Encapsulation = bundling operations to
access related data as a data abstraction

Information hiding = providing only the
information a client needs to know

In object-oriented languages we can
implement data abstractions as classes.

Encapsulate state

24

public class Game {
!private List<ISquare> squares;
!private int size;
!private Queue<Player> players;
!private Player winner;
!...
}

Don't let anyone
else play with you.

— Joseph Pelrine
public class Player {
!private String name;
!private ISquare square;
!...
}

public class Square implements ISquare {
!protected int position;
!protected Game game;
!private Player player;
!...
}

Keep behaviour close to state

25

public class Square implements ISquare {
!private Player player;

!public boolean isOccupied() {
!! return player != null;
!}

!public void enter(Player player) {
!! this.player = player;
!}

!public void leave(Player _) {
!! this.player = null;
!}
!...
}

Program to an interface, not an implementation

26

public interface ISquare {
!public int position();
!public ISquare moveAndLand(int moves);
!public boolean isFirstSquare();
!public boolean isLastSquare();
!public void enter(Player player);
!public void leave(Player player);
!public boolean isOccupied();
!public ISquare landHereOrGoHome();
}

public class Player {
!private ISquare square;
!public void moveForward(int moves) {
!! square.leave(this);
!! square = square.moveAndLand(moves);
!! square.enter(this);
!}!...
}

Depend on
interfaces, not

concrete classes

Players do not
need to know all
the different kinds
of squares …

Aside: Messages and methods

27

Objects send messages to one another;
they don’t “call methods”

public class Square implements ISquare {
!private Player player;

!public void enter(Player player) {
!! this.player = player;
!}
!...
} public class FirstSquare extends Square {

!private List<Player> players;

!public void enter(Player player) {
!! players.add(player);
!}
!...
}

Clients should not
care what kind of
square they occupy

public class Square implements ISquare {
!public ISquare moveAndLand(int moves) {
!!return game.findSquare(position, moves).landHereOrGoHome();
!}
!public ISquare landHereOrGoHome() {
!!return this.isOccupied() ? game.firstSquare() : this ;
!}
!...
}

The Open-Closed Principle

28

public class Ladder extends Square {
!public ISquare landHereOrGoHome() {
!! return this.destination().landHereOrGoHome();
!}
!protected ISquare destination() {
!! return game.getSquare(position+transport);
!}
!...
}

Make software entities
open for extension but

closed for modifications.

http://en.wikipedia.org/wiki/Open/closed_principle

Why are data abstractions important?

Communication — Declarative Programming
> Data abstractions …

—State what a client needs to know, and no more!
—State what you want to do, not how to do it!
—Directly model your problem domain

Software Quality and Evolution
> Data abstractions …

—Decompose a system into manageable parts
—Protect clients from changes in implementation
—Encapsulate client/server contracts
—Can extend their interfaces without affecting clients
—Allow new implementations to be added transparently to a system

29

Roadmap

30

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Delegate responsibility

31

Responsibility implies
non-interference.

— Timothy Budd

“Don’t do anything you can
push off to someone else.”

— Joseph Pelrine
public class Player {
!public void moveForward(int moves) {
!! square.leave(this);
!! square = square.moveAndLand(moves);
!! square.enter(this);
!}
!...
}

public class Square implements ISquare {
!public ISquare moveAndLand(int moves) {
!! return game.findSquare(position, moves)
!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! .landHereOrGoHome();
!}
!...
}

public class Game {
!public ISquare findSquare(...) {
!! ...
!! return this.getSquare(target);
!}
!...
}

Lots of short methods

32
http://c2.com/cgi/wiki?LotsOfShortMethods

Once and only once
“In a program written with good style, everything
is said once and only once.”

Lots of little pieces
“Good code invariably has small methods and
small objects. Only by factoring the system into
many small pieces of state and function can you
hope to satisfy the ‘once and only once’ rule.”

Composed Method

33

•Keep all of the operations in a method at the
same level of abstraction.
•This will naturally result in programs with
many small methods, each a few lines long.

Divide your program into methods
that perform one identifiable task.

Maintain a consistent level of abstraction …

34

public class Game {
!public void play(Die die) {
!! System.out.println("Initial state: " + this);
!! while (this.notOver()) {
!! ! int roll = die.roll();
!! ! System.out.println(this.currentPlayer()
!! ! ! + " rolls " + roll + ": " + this);
!! ! this.movePlayer(roll);
!! }
!! System.out.println("Final state: " + this);
!! System.out.println(this.winner() + " wins!");
!}
!...

… to obtain many small methods

35

public boolean notOver() {
!return winner == null;
}

public Player currentPlayer() {
!return players.peek();
}

public void movePlayer(int roll) {
!Player currentPlayer = players.remove(); // from front of queue
!currentPlayer.moveForward(roll);
!players.add(currentPlayer); !! ! ! ! ! ! ! // to back of the queue
!if (currentPlayer.wins()) {
!! winner = currentPlayer;
!}
}

public Player winner() {
!return winner;
}

… and simple classes

36

public class Die {
!static final int MIN = 1;
!static final int MAX = 6;

!public int roll() {
!! return this.random(MIN,MAX);
!}

!public int random(int min, int max) {
!! int result = (int) (min + Math.floor((max-min) * Math.random()));
!! return result;
!}
}

0"

2"

4"

6"

8"

10"

12"

14"

ro
ll""

isF
irs
tS
qu
ar
e""

isO
cc
up
ied
""

lan
dH
er
eO
rG
oH
om
e""

cu
rre
nt
Pla
ye
r""

fir
stS
qu
ar
e""

isO
ve
r""

isV
ali
dP
os
iAo
n""

m
ain
""

no
tO
ve
r""

se
tS
qu
ar
eT
oL
ad
de
r""

se
tS
qu
ar
eT
oS
na
ke
""

wi
nn
er
""

de
sA
na
Ao
n""

inv
ar
ian
t""

isV
ali
dT
ra
ns
po
rt"
"

lan
dH
er
eO
rG
oH
om
e""

sq
ua
re
La
be
l""

La
stS
qu
ar
e""

isL
as
tS
qu
ar
e""

Pla
ye
r""

sq
ua
re
""

to
St
rin
g""

wi
ns
""

Sn
ak
e""

sq
ua
re
La
be
l""

isF
irs
tS
qu
ar
e""

isL
as
tS
qu
ar
e""

isO
cc
up
ied
""

lan
dH
er
eO
rG
oH
om
e""

ne
xtS
qu
ar
e""

pla
ye
r""

po
siA
on
""

pr
ev
iou
sS
qu
ar
e""

sq
ua
re
La
be
l""

to
St
rin
g""

Fir
stS
qu
ar
e""

en
te
r""

lea
ve
""

ge
tS
qu
ar
e""

ini
tS
qu
ar
e""

inv
ar
ian
t""

po
siA
on
""

en
te
r""

inv
ar
ian
t""

lea
ve
""

m
ov
eA
nd
La
nd
""

ra
nd
om
""

inv
ar
ian
t""

joi
nG
am
e""

m
ov
e1
str
ing
s""

Sq
ua
re
""

Ga
m
e""

se
tS
qu
ar
e""

La
dd
er
""

m
ov
eF
or
wa
rd
""

m
ov
e2
jac
kB
ac
kw
ar
ds
""

te
stR
an
do
m
""

te
stR
oll
""

pla
ye
r""

ad
dP
lay
er
s""

to
St
rin
g""

fin
dS
qu
ar
e""

m
ov
e1
jac
k""

m
ov
e2
jill
La
dd
er
""

m
ov
e4
jill
Sn
ak
e""

m
ov
e5
jac
kL
ad
de
r""

m
ov
e6
jill
""

m
ov
e7
jac
kB
ou
nc
es
Ba
ck
To
Jill
""

ad
dS
qu
ar
es
""

ini
Aa
lSt
rin
gs
""

m
ov
e8
jill
W
ins
""

m
ov
eP
lay
er
""
pla
y""

m
ov
e3
jac
kM
ee
tsJ
ill"
"

ne
wG
am
e""

loc"

37

Snakes and Ladders methods

• 76 methods
• Most are 1 or 2 LOC
• Average 3.2 LOC
• All methods > 5 LOC are

tests or algorithms

Design by Contract = Don't accept anybody else's
garbage!

38

public class Game {
!public void movePlayer(int roll) {
!! assert roll>=1 && roll<=6;
!! ...
!}
!...
}

public class Player {
!public void moveForward(int moves) {
!! assert moves > 0;
!! ...
!}
!...
}

public class Square implements ISquare {
!public ISquare moveAndLand(int moves) {
!! assert moves >= 0;
!! ...
!}
!...
}

More on this in the
following lecture

http://en.wikipedia.org/wiki/Design_by_contract

Demo

39

public static void main(String args[]) {
!(new SimpleGameTest()).newGame().play(new Die());
}

Roadmap

40

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

?!

Program declaratively

41

Name objects and methods so that code documents itself

public class Player {!
!public void joinGame(Game game) {
!! square = game.getSquare(1);
!! ((FirstSquare) square).players().add(this);
!}
!...
} public class Player {!

!public void joinGame(Game game) {
!! square = game.firstSquare();
!! square.enter(this);!
!}
!...
}

Role Suggesting Instance Variable Name

42

Name instance variables for the
role they play in the computation.

Make the name plural if the
variable will hold a collection.

public class Game {
!private List<ISquare> squares;
!private int size;
!private Queue<Player> players;
!private Player winner;
!...
}

Intention Revealing Method Name

43

public class Player {
!public void moveForward(int moves) {
!! ...
!! square.enter(this);
!}
!...
}

public class Square implements ISquare {
!private Player player;
!public void enter(Player player) {
!! this.player = player;
!}
!...
}

public class FirstSquare extends Square {
!private List<Player> players;
!public void enter(Player player) {
!! players.add(player);
!}
!...
}

Name methods after what
they accomplish, not how.

Roadmap

44

> Motivation: stability in the face of change
> Model domain objects
> Model responsibilities
> Separate interface and implementation
> Delegate responsibility
> Let the code talk
> Recognize Code Smells

Don’t send messages to objects
returned from other message sends

public void movePlayer(int roll) {
!...
!if (currentPlayer.square().isLastSquare()) {
!! winner = currentPlayer;
!}
}

The Law of Demeter: “Do not talk to strangers”

45en.wikipedia.org/wiki/Law_Of_Demeter

public void movePlayer(int roll) {
!...
!if (currentPlayer.wins()) {
!! winner = currentPlayer;
!}
}

Tell, don't ask

Be sensitive to Code Smells

> Duplicated Code
—Missing inheritance or delegation

> Long Method
—Inadequate decomposition

> Large Class / God Class
—Too many responsibilities

> Long Parameter List
—Object is missing

> Feature Envy
—Method needing too much information from another object

> Data Classes
—Only accessors

46http://en.wikipedia.org/wiki/Code_smell

Conclusions and outlook

> Use responsibility-driven design to stabilize domain concepts
> Delegate responsibility to achieve simple, flexible designs

> Specify contracts to protect your data abstractions
—Design by Contract lecture

> Express your assumptions as tests to tell what works and doesn’t
—Testing Framework lecture

> Develop iteratively and incrementally to allow design to emerge
— Iterative Development lecture

> Encode specialization hierarchies using inheritance
— Inheritance lecture

47

48

What you should know!

✎ Why does software change?
✎ Why should software model domain concepts?
✎ What is responsibility-driven design?
✎ How do scenarios help us to design interfaces?
✎ What is the difference between abstraction,

encapsulation and information hiding?
✎ Can you explain the Open-Closed principle?
✎ How can delegation help you write declarative code?
✎ How should you name methods and instance variables?

49

Can you answer these questions?

✎How do you identify responsibilities?
✎How can we use inheritance to model the relationship

between Snakes and Ladders?
✎How can we tell if an object has too many

responsibilities?
✎ Is top-down design better than bottom-up design?
✎Why should methods be short?
✎How does the Law of Demeter help you to write flexible

software?
✎Why do “God classes” and Data classes often occur

together?

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

