
Oscar Nierstrasz

3. Design by Contract

Design by Contract

2

Bertrand Meyer, Touch of Class —
 Learning to Program Well with Objects
and Contracts, Springer, 2009.

Bertrand Meyer is a French computer scientist who was a
Professor at ETH Zürich (successor of Niklaus Wirth) from
2001-2015. He is best known as the inventor of “Design by
Contract”, and as the designer of the Eiffel programming
language, which provides built-in for DbC.

Who’s to blame?

3

The components fit but the system does not work.
Who’s to blame? The component developer or the
system integrator?

DbC makes clear the “contract” between a supplier (an object or
“component”) and its client. When something goes wrong, the
contract states whose fault it is. This simplifies both design and
debugging.

Roadmap

4

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Roadmap

5

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Class Invariants

6

An invariant is a predicate that must hold at certain points
in the execution of a program

A class invariant characterizes the valid states of instances
It must hold:

1. after construction
2. before and after every public method

+service
–state
Provider class invariant:

state is valid

The word “invariant” means “never changing” — so, it refers to a
predicate that is “always true” about instances of a class. In the
case of DbC, “always” means “when it matters”, i.e., whenever a
client could be affected. In practice this means before or after any
public methods.

Client
+service
–state
Provider

precondition:
request ok1:request

2:response
postcondition:

service guaranteed!

7

Contracts

A contract binds the client to pose valid requests, and
binds the provider to correctly provide the service.

A contract formalizes what preconditions must hold before the
client may request a service. If the preconditions do not hold, then
the client is at fault, and the supplier is not required to do
anything.

The contract further formalizes what postconditions must hold.
If the preconditions hold, then the supplier is bound to fulfil the
service, after which the postconditions should hold. If they do
not, then the supplier is at fault.

8

Contract violations

If either the client or the provider violates the contract,
an exception is raised.

NB: The service does not need to implement any special
logic to handle errors — it simply raises an exception!

Client
+service
–state
Provider

precondition:
request ok1:bad request

2:exception
postcondition:

service guaranteed!

What to do if something goes wrong?

What you want to avoid is complicated logic to deal with every
eventuality. Instead, specify clearly the contract, and raise an
exception if something goes wrong. Handle the exception at the
next highest level (typically abort or retry). More on this later.

9

Exceptions, failures and defects

> An exception is the occurrence of an abnormal condition
during the execution of a software element.

> A failure is the inability of a software element to satisfy its
purpose.

> A defect (AKA “bug”) is the presence in the software of
some element not satisfying its specification.

Exceptions are a fundamental programming language mechanism
to signal failure of a service. By specifying exceptions and
exception handlers, we avoid the need to encode special error
codes as return values from functions, and to check these values
in client code. Exception handlers can be defined at an arbitrary
level to simplify software design.

Note the distinction between what happens during execution
(exception, failure) and what is in the source code (defect, bug).

Later in the context of unit testing, we will also talk about failures
(of tests) and errors (unexpected exceptions).

Disciplined Exceptions

> There are only two reasonable ways to react to an
exception:
1. clean up the environment and report failure to the client

(“organized panic”)
2. attempt to change the conditions that led to failure and retry

10

A failed assertion often indicates presence of a software
defect, so “organized panic” is usually the best policy.

At the very least, an object that catches an exception should
reestablish its class invariant, and then re-throw the exception.
In other words, “organized panic” means, “leave myself in a clean
state and pass the buck.”

Usually with DbC, exceptions are raised in the preconditions,
before any state is modified, so there is nothing to do to
reestablish the class invariant. However it may be that some work
has been done, and a service requested of another object fails.
Then some cleanup may be necessary before throwing an
exception.

Retrying only makes sense if there is a subsequent chance of
success, e.g., trying a different algorithm, trying a fixed number
of times to obtain a resource …

Roadmap

11

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

12

Stacks

A Stack is a classical data abstraction with many applications in
computer programming.
Stacks support two mutating methods: push and pop.

Operation Stack isEmpty() size() top()

TRUE 0 (error)
push(6) FALSE 1 6
push(7) FALSE 2 7
push(3) FALSE 3 3
pop() FALSE 2 7

push(2) FALSE 3 2
pop() FALSE 2 7

6 7

6 7 3

6 7

6 7 2

6 7

6

A stack holds a number of elements in the order in which they are
pushed and returns them in reverse order through the pop
operation. Stack behavior is known as last in, first out (LIFO).
(The last element pushed is the first one popped. Conversely, the
first one pushed is the last one to be popped.)

Stacks are a fundamental construct in the implementation of
programming languages: The run-time stack keeps track of
operations that are executed. Every operation that is called pushes
a stack frame onto the run-time stack holding its local variables,
and this frame is popped when the operation returns, placings its
callers frame on the top of the stack.
More on this in the lecture on Debugging.

13

Stack pre- and postconditions

Stacks should respect the following contract:

service pre post
isEmpty() - no state change

size() - no state change

push(Object item) -
not empty,
size == old size + 1,
top == item

top() not empty no state change

pop() not empty size == old size - 1

Stack invariant

> The only thing we can say about the Stack class
invariant is that the size is always ≥ 0
—we don’t know anything yet about its state!

14

Roadmap

15

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

Design by Contract

16

“If you promise to call S with the precondition
satisfied, then I, in return, promise to deliver a final
state in which the post-condition is satisfied.”

Consequence:
—if the precondition does not hold, the object is not required to

provide anything! (in practice, an exception is raised)

When you design a class, each service S provided
must specify a clear contract.

17

In other words …

Design by Contract =
Don’t accept anybody

else’s garbage!

DbC simplifies design by clearly separating responsibilities.

18

Pre- and Post-conditions

The pre-condition binds clients:
—it defines what the data abstraction requires for a call to the

operation to be legitimate
—it may involve initial state and arguments
—example: stack is not empty

The post-condition, in return, binds the provider:
—it defines the conditions that the data abstraction ensures on

return
—it may only involve the initial and final states, the arguments

and the result
—example: size = old size + 1

19

Benefits and Obligations

A contract provides benefits and obligations for both
clients and providers:

Obligations Benefits

Client Only call pop() on a
non-empty stack!

Stack size decreases by 1.
Top element is removed.

Provider
Decrement the size.
Remove the top
element.

No need to handle case
when stack is empty!

Who’s to blame?

20

If preconditions are violated, the client is to blame.
If invariants or postconditions fail, the component
is to blame!

Roadmap

21

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

22

StackInterface

Interfaces let us abstract from concrete implementations:

✎How can clients accept multiple implementations of a
data abstraction?

✔ Make them depend only on an interface or an abstract
class.

public interface StackInterface<E> {
public boolean isEmpty();
public int size();
public void push(E item);
public E top();
public void pop();

}

This interface is generic, that is it takes elements of an arbitrary
type E. This is useful to avoid losing type information and
cluttering your code with downcasts when you retrieve elements
from the stack and want to use them.

23

Interfaces in Java

Interfaces reduce coupling between objects and their
clients:

> A class can implement multiple interfaces
—... but can only extend one parent class

> Clients should depend on an interface, not an
implementation
—... so implementations don’t need to extend a specific class

Define an interface for any data abstraction
that will have more than one implementation

As a rule, you should avoid depending on concrete classes as
much as possible in your code. Dependencies are evil and make
your code fragile!
Instead, introduce interfaces wherever you expect objects of more
than one possible class to be used. This will leave your design
free to accommodate new classes in the future.

[On the other hand, if it is clear that only one class is ever needed,
don’t clutter your design with unneeded interfaces.]

size = 0

top =

nilsize = 1

top = 6

nil

24

Stacks as Linked Lists

A Stack can easily
be implemented by
a linked data
structure:

stack = new Stack();
stack.push(6);
stack.push(7);
stack.push(3);
stack.pop();

size = 2

top =

6

nil

7

size = 3

top =

6

nil

7

3

size = 2

top =

6

nil

7

25

LinkStack Cells

We can define the Cells of the linked list as an inner class
within LinkStack:

public class LinkStack<E> implements StackInterface<E> {
private Cell top;
private class Cell {

E item;
Cell next;
Cell(E item, Cell next) {

this.item = item;
this.next = next;

}
}
...

}

Inner classes are useful when you have a complex object with a
nested object that is very simple and will not be used anywhere
else in your code.

26

Private vs Public instance variables

✎ When should instance variables be public?
✔ Always make instance variables private or protected.

The Cell class is a special case, since its instances are
strictly private to LinkStack!

Note that Java has a fourth category of visibility: if you do not
declare a method or a variable to be one of public,
protected or private, then the default is package scope.

Features with package scope can be accessed by any code within
the same package, but not outside. Package scope can be
especially useful if you want features of a particular exposed to
other related classes (e.g., test classes), but not to the world at
large.

27

LinkStack abstraction

The constructor must construct a valid initial state:

public class LinkStack<E> implements StackInterface<E> {
...
private int size;
public LinkStack() {

// Establishes the class invariant.
top = null;
size = 0;

}
...

28

Class Invariants

A class invariant is any condition that expresses the valid
states for objects of that class:

> it must be established by every constructor
> every public method

—may assume it holds when the method starts
—must re-establish it when it finishes

Stack instances must satisfy the following invariant:
> size ≥ 0
> ...

29

LinkStack Class Invariant

A valid LinkStack instance has an integer size, and a
top that points to a sequence of linked Cells, such
that:
—size is always ≥ 0
—When size is zero, top points nowhere (== null)
—When size > 0, top points to a Cell containing the top item

When to check invariants?

> In principle, check invariants:
—at the end of each constructor
—at the end of every public mutator

30

If a method does not change the state of the object, then there is
no need to check the invariant at its completion.

Roadmap

31

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

32

Assertions

> An assertion is a declaration of a boolean expression that
the programmer believes must hold at some point in a
program.
—Assertions should not affect the logic of the program
—If an assertion fails, an exception is raised

x = y*y;
assert x >= 0;

If an assertion is false, there is a bug in the program!

33

Assertions

Assertions have four principle applications:
1. Help in writing correct software

— formalizing invariants, and pre- and post-conditions
2. Documentation aid

— specifying contracts
3. Debugging tool

— testing assertions at run-time
4. Support for software fault tolerance

— detecting and handling failures at run-time

Assertions have applications beyond DbC, particularly in the
context of proving that a non-trivial algorithm is correct.

Assertions can be used to document and check your assumptions
at various points in the execution of your code. This is especially
useful for debugging your code (you will get an exception at the
point where your assertion fails, not later when the code breaks).

DbC is just a special case, where the assertions correspond to pre-
and post-conditions, and invariants.

34

Assertions in Java

assert is a keyword in Java since version 1.4

will raise an AssertionError if expression is false.
—NB: Throwable Exceptions must be declared; Errors need not be!

✔ Be sure to enable exceptions in eclipse! (And set the vm
flag -enableassertions [-ea])

assert expression;

Note the relationship between assertions and exceptions.

An exception is a programming language mechanism to signal
that the normal flow of control of the program cannot proceed
because some exceptional event has taken place (e.g., bad input,
unavailable resource etc.).

An assertion is a mechanism to state that a particular predicate
should hold at a particular point in the code. If this predicate fails,
this is an exceptional event, and an exception is raised.

35

Enabling assertions in eclipse

36

Checking pre-conditions

Assert pre-conditions to inform clients when they violate the
contract.

✎ When should you check pre-conditions to methods?
✔ Always check pre-conditions, raising exceptions if they

fail.

public E top() {
assert !this.isEmpty(); // pre-condition
return top.item;

}

NB: This is all you have to do!

Note how elegant this is – you do not need to write any special
code to handle the error! DbC says that, when a pre-condition
fails, it’s not your fault, so you don’t have to do anything special.
Since pre-conditions are checked before any other code is run,
you are also sure that the state of the object has not changed, so
you do not have to worry about cleaning up your state to
reestablish the invariant.

NB: pre-conditions, post-conditions and invariants should never
use code that modifies the state of your object.

37

Checking class invariants

Every class has its own invariant:

protected boolean invariant() {
return (size >= 0) &&

((size == 0 && this.top == null)
|| (size > 0 && this.top != null));

}

Why protected and not private?

38

Checking post-conditions

Assert post-conditions and invariants to inform yourself
when you violate the contract.

✎ When should you check post-conditions?
✔ Check them whenever the implementation is non-trivial.

public void push(E item) {
top = new Cell(item, top);
size++;
assert !this.isEmpty(); // post-condition
assert this.top() == item; // post-condition
assert invariant();

}
NB: This is all you have to do!

Debugging faulty code can be very hard, particularly if that code
corrupts the state of the program but does not cause a the program
to immediately fail. In this case the error will occur elsewhere in
the program, when the corrupted data is used.

By explicitly stating and checking pre- and post-conditions, as
well as invariants, you increase the chance that exceptions will be
raised precisely where the fault code lies, and bugs can be
eliminated much more efficiently.

Roadmap

39

> Contracts
> Stacks
> Design by Contract
> A Stack Abstraction
> Assertions
> Example: balancing parentheses

40

Example: Balancing Parentheses

Problem:
> Determine whether an expression containing parentheses

(), brackets [] and braces { } is correctly balanced.

Examples:
> balanced:

> not balanced:

if (a.b()) { c[d].e(); }
else { f[g][h].i(); }

((a+b())

41

A simple algorithm

Approach:
> when you read a left parenthesis, push the matching

parenthesis on a stack
> when you read a right parenthesis, compare it to the

value on top of the stack
—if they match, you pop and continue
—if they mismatch, the expression is not balanced

> if the stack is empty at the end, the whole expression is
balanced, otherwise not

Stacks are the perfect data abstraction for keeping track of your
position while navigating through a nested hierarchy. As you
navigate down, you push your location, and as you return
upwards, you pop. This is exactly what happens in the run-time
stack, which keeps track of the hierarchy of method calls.

In exactly the same way, a stack can keep track of our position in
the tree of nested parentheses.

42

Using a Stack to match parentheses

Sample input: “([{ }]]”

Input Case Op Stack
(left push))
[left push])]
{ left push })]}
} match pop)]
] match pop)
] mismatch ^false)

43

The ParenMatch class

A ParenMatch object uses a stack to check if
parentheses in a text String are balanced:

public class ParenMatch {
private String line;
private StackInterface<Character> stack;

public ParenMatch(String aLine,
StackInterface<Character> aStack) {

{
line = aLine;
stack = aStack;

}

44

A declarative algorithm

We implement our algorithm at a high level of abstraction:
public boolean parenMatch() {

for (int i=0; i<line.length(); i++) {
char c = line.charAt(i);
if (isLeftParen(c)) { // expect matching right paren later

stack.push(matchingRightParen(c)); // Autoboxed to Character
} else {

if (isRightParen(c)) {
// empty stack => missing left paren
if (stack.isEmpty()) { return false; }
if (stack.top().equals(c)) { // Autoboxed

stack.pop();
} else { return false; } // mismatched paren

}
}

}
return stack.isEmpty(); // not empty => missing right paren

}

“Declarative” here means we say what we do, rather than how to
do it. At this level of abstraction we do not care how we check if
c is a left parenthesis or is a matching right parenthesis, we only
care that we need to do this. The details are available at the next
level of abstraction down.

Well-written declarative code is self-documenting.

By writing a declarative algorithm we enhance readability and
program comprehension, and thus we improve maintainability of
our code.

45

Ugly, procedural version

public boolean parenMatch() {
char[] chars = new char[1000]; // ugly magic number
int pos = 0;
for (int i=0; i<line.length(); i++) {

char c = line.charAt(i);
switch (c) { // what is going on here?
case '{' : chars[pos++] = '}'; break;
case '(' : chars[pos++] = ')'; break;
case '[' : chars[pos++] = ']'; break;
case ']' : case ')' : case '}' :

if (pos == 0) { return false; }
if (chars[pos-1] == c) { pos--; }
else { return false; }
break;

default : break;
}

}
return pos == 0; // what is this?

}

This code does exactly what the previous version did, but is not
declarative. It requires extra effort to understand what is going on.

46

Helper methods

The helper methods are trivial to implement, and their
details only get in the way of the main algorithm.

	 private boolean isLeftParen(char c) {
return (c == '(') || (c == '[') || (c == '{');

}

private boolean isRightParen(char c) {
return (c == ')') || (c == ']') || (c == '}');

}

By choose intention-revealing names for helper methods, we
simultaneously promote self-documenting, declarative code in
clients, and we also make the intent of the method body clear.

47

Running parenMatch

public static void parenTestLoop(StackInterface<Character> stack) {
BufferedReader in =

new BufferedReader(new InputStreamReader(System.in));
String line;
try {

System.out.println("Please enter parenthesized expressions to test");
System.out.println("(empty line to stop)");
do {

line = in.readLine();
System.out.println(new ParenMatch(line, stack).reportMatch());

} while(line != null && line.length() > 0);
System.out.println("bye!");

} catch (IOException err) {
} catch (AssertionException err) {

err.printStackTrace();
}

}

48

Running ParenMatch.main ...

Which contract has been violated?

Please enter parenthesized expressions to test
(empty line to stop)
(hello) (world)
"(hello) (world)" is balanced
()
"()" is balanced
static public void main(String args[]) {
"static public void main(String args[]) {" is not balanced
()
"()" is not balanced
}
"}" is balanced

"" is balanced
bye!

We have been careful about specifying the contracts for the Stack
abstraction, but we were sloppy with the ParenMatch class.

Which implicit contract have we failed to formalize and respect?
Which assertion(s) need to be added, and how do we correct the
bug?

NB: There are several possible solutions …

49

What you should know!

✎ What is an abstract data type?
✎ What is the difference between encapsulation and

information hiding?
✎ How are contracts formalized by pre- and post-

conditions?
✎ What is a class invariant and how can it be specified?
✎ What are assertions useful for?
✎ What situations may cause an exception to be raised?
✎ How can helper methods make an implementation more

declarative?

50

Can you answer these questions?

✎When should you call super() in a constructor?
✎When should you use an inner class?
✎What happens when you pop() an empty java.util.Stack?

Is this good or bad?
✎What impact do assertions have on performance?
✎Can you implement the missing LinkStack methods?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

