
Oscar Nierstrasz

6. Iterative Development

Testing Implementation

Design
Requirements 

Collections

Analysis

2

Iterative Development

Sources
> Rebecca Wirfs-Brock, Alan McKean, Object

Design — Roles, Responsibilities and
Collaborations, Addison-Wesley, 2003.

> Kent Beck, Extreme Programming Explained
— Embrace Change, Addison-Wesley, 1999.

Roadmap

3

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

Roadmap

4

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

5

The Classical Software Lifecycle

The waterfall model is unrealistic for many reasons, especially:
> requirements must be “frozen” too early in the life-cycle
> requirements are validated too late

The classical software
lifecycle models the

software development
as a step-by-step

“waterfall” between the
various development

phases.
Maintenance

Testing

Implementation

Design

Requirements 
Collections

Analysis

The waterfall model of software development was first described
by Winston Royce in 1970 as an example of a flawed process:

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

In this approach, each phase is carried out strictly sequentially,
with deliverables (documents) being passed from one phase to the
next. The deliverables constitute the “water” falling downhill.
The key problems are (i) all requirements must be completely
known in advance, and (ii) only at the end of the process is there
any working software that can be validating. In essence waterfall
process maximizes risk and minimizes value.
Curiously many organizations base their development process on
the waterfall model, even though it is known not to work in
practice.

6

Iterative Development

In practice, development is always iterative, and all software phases
progress in parallel.

✎If the waterfall model is pure fiction, why
is it still the standard software process?

Testing Implementation

Design
Requirements 

Collections

Analysis
Maintenance through iteration

Testing based on requirements Validation through prototyping

Testing throughout implementation

Design through refactoring

In an iterative development process, you start with a minimal set
of requirements, carry out a feasibility study, implement a first
prototype, and then evaluate it. You then proceed iteratively and
incrementally, adding new requirements, extending the system,
and delivering a new iteration.
In practice, even organizations that claim to be applying a
waterfall model are actually applying an iterative process.

Roadmap

7

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

8

What is Responsibility-Driven Design?

Responsibility-Driven Design is
> a method for deriving a software design in terms of

collaborating objects
> by asking what responsibilities must be fulfilled to meet

the requirements,
> and assigning them to the appropriate objects (i.e., that

can carry them out).

RDD starts by identifying potential domain objects. A good
candidate for an object in your design has clear responsibilities.
Responsibilities consist of (i) what the objects knows, and (ii)
what it can do. In the final design, what an object knows will be
represented in its state (instance variables), and what it can do
will end up as services (methods). In the initial design, however,
we only identify these two aspects in very general terms (e.g., a
stack manages a LIFO collection of objects, and lets clients push
and pop elements).

In a good design, all objects have clear responsibilities.

9

How to assign responsibility?

Pelrine’s Laws:
✔ “Don't do anything you can push off to someone else.”
✔ “Don't let anyone else play with you.”

RDD leads to fundamentally different designs than those
obtained by functional decomposition or data-driven
design.

Class responsibilities tend to be more stable over time than
functionality or representation.

In RDD, things should happen close to objects with those
responsibilities. If an object is responsible for some knowledge,
then it should also be responsible for services related to that
knowledge. Pelrine’s Laws make clear that you should not violate
responsibilities in a system.

Roadmap

10

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

11

Example: Tic Tac Toe

Requirements:

“A simple game in which one player marks down only
crosses and another only ciphers [zeroes], each
alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines
crossed by two horizontal lines, the winner being the
first to fill in three of his marks in any row or diagonal.”

— Random House Dictionary

We should design a program that implements the rules of
Tic Tac Toe.

12

Setting Scope

Questions:
> Should we support other games?
> Should there be a graphical UI?
> Should games run on a network? Through a browser?
> Can games be saved and restored?
A monolithic paper design is bound to be wrong!

An iterative development strategy:
> limit initial scope to the minimal requirements that are interesting
> grow the system by adding features and test cases
> let the design emerge by refactoring roles and responsibilities

✎ How much functionality should you deliver in the first version of a system?
✔ Select the minimal requirements that provide value to the client.

These principles are also formalized in XP and other “agile
development” methods. Start with a small set of initial
requirements that bring value, implement those in a short
development cycles, then select new requirements and iterate.
Never start with a “big design” that attempts to take into account
all the features that you might need later. Chances are very high
that those requirements will change either their nature or their
priority before you get to them.

Roadmap

13

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

14

Tic Tac Toe Objects

Some objects can be identified from the requirements:

Objects Responsibilities
Game Maintain game rules

Player
Make moves
Mediate user interaction

Compartment Record marks
Figure (State) Maintain game state

Entities with clear responsibilities are more likely to end up
as objects in our design.

We can identify all these domain objects from the “requirements
document” (the definition of the game). Potential objects for our
design are those that have some clear responsibilities.
Note that in a good design, no object has too many
responsibilities. Clearly we could assign all the responsibilities
listed to a single object, e.g, the game, but that would lead to a
very centralized, procedural design.

15

Tic Tac Toe Objects ...

Others can be eliminated:
Non-Objects Justification

Crosses, ciphers Same as Marks

Marks Value of Compartment

Vertical lines Display of State

Horizontal lines ditto

Winner State of Player

Row View of State

Diagonal ditto

✎How can you tell when you have the “right” set of objects?

We can also identify domain objects from our requirements
document that do not have any identifiable responsibilities. Such
objects may be eliminated for various reasons, for example, some
are just different names for objects we have already seen (crosses
= marks), or because they just describe a state of an object we
already have (winner is a state of a player).

16

Missing Objects

Now we check if there are unassigned responsibilities:

> Who starts the Game?
> Who is responsible for displaying the Game state?
> How do Players know when the Game is over?

Let us introduce a Driver that supervises the Game.

✎ How can you tell if there are objects missing in your
design?

✔ When there are responsibilities left unassigned.

Roadmap

17

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

18

Scenarios

A scenario describes a typical sequence of interactions:

Are there other equally valid scenarios for this problem?

Driver

create

Game Player X Player Y

print

done?

print

done?

print

done?

create

create

getMove

getMove

getMove

Here we have another UML sequence diagram. As before, read
the diagram from top to bottom: First the driver creates a game
object, which in turn creates two player objects.
Afterwards we will revisit this scenario and redesign it when we
start to consider new requirements. For the time being, it is “good
enough” to start our initial design.

19

Version 0 — skeleton

class GameDriver {
static public void main(String args[]) {

TicTacToe game = new TicTacToe();
do { System.out.print(game); }
while(game.notOver());

}
public class TicTacToe {
 public boolean notOver() { return false; }

public String toString() { return("TicTacToe\n");}
}

Our first version does very little!

✎ How do you iteratively “grow” a program?
✔ Always have a running version of your program.

We will iteratively build up our TicTacToe game, adding new
features with each iteration. After each iteration we will have a
functioning game that does something new.
Although this first version is not really useful, we show it to
underline the point that every iteration should produce a
“complete” running program.

Roadmap

20

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

21

Version 1 — game state

> We will use chess notation to access the game state
—Columns ‘a’ through ‘c’
—Rows ‘1’ through ‘3’

✎ How do we decide on the right interface?
✔ First write some tests!

22

Test-first development

public class TicTacToeTest {
protected TicTacToe game;

@Before public void setUp() {
game = new TicTacToe();

}

@Test public void testState() {
assertEquals(game.get('a','1'), ' ');
assertEquals(game.get('c','3'), ' ');
game.set('c','3','X');
assertEquals(game.get('c','3'), 'X');
game.set('c','3',' ');
assertEquals(game.get('c','3'), ' ');
assertFalse(game.inRange('d','4'));

}
}

Here we express that the game board should initially contain just
blank squares. We need a way to set squares of the board and to
get their current values. We also need a way to check whether a
particular coordinate on the board is valid (in range).
The test express how we want to be able to perform these simple
actions with the board. In other words, designing the test helps us
design the interface of the code we are testing.
Note that we are also testing boundary conditions by setting and
getting values at the (literal) boundary of the board.

23

Generating methods

Test-first programming can drive the development
of the class interface …

As before, we can exploit the quick fix feature of IntelliJ to
generate the methods we need to make the test run.

Roadmap

24

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

25

Representing game state

public class TicTacToe {
protected char[][] gameState;
public TicTacToe() {

gameState = new char[3][3];
for (char col='a'; col <='c'; col++)

for (char row='1'; row<='3'; row++)
this.set(col,row,' ');

}
...

26

Checking pre-conditions

set() and get() translate from chess notation to array indices.

public void set(char col, char row, char mark) {
assert(inRange(col, row)); // precondition
gameState[col-'a'][row-'1'] = mark;

}
public char get(char col, char row) {

assert(inRange(col, row));
return gameState[col-'a'][row-'1'];

}
public boolean inRange(char col, char row) {

return (('a'<=col) && (col<='c')
&& ('1'<=row) && (row<='3'));

}

27

Printing the State

By re-implementing TicTacToe.toString(), we can
view the state of the game:

✎ How do you make an object printable?
✔ Override Object.toString()

3 | |
 ---+---+---
2 | |
 ---+---+---
1 | |
 a b c

NB: By overriding the toString() method, you will also
obtain more useful feedback within the debugger, as the built-in
object inspector will use this method to display the state of
objects.

28

TicTacToe.toString()

Use a StringBuffer (not a String) to build up the
representation:

public String toString() {
StringBuffer rep = new StringBuffer();
for (char row='3'; row>='1'; row--) {

rep.append(row);
rep.append(" ");
for (char col='a'; col <='c'; col++) { ... }
...

}
rep.append(" a b c\n");
return(rep.toString());

}

The String class in Java is immutable, that is, instances once
created cannot change their state. Immutable classes are a
common design idiom to improve readability and runtime
efficiency. They are also inherently thread-safe, that is, they can
safely be shared by concurrent threads, since no thread can
modify their values.
Typically immutable objects support operators to create new
instances from combinations of existing ones. For example, in
Java the + operator will create a new string from two existing
ones.
Building up a complex string through repeated use of this
operator is not very efficient, however, which is why the
StringBuffer class is available for this purpose.

Roadmap

29

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

30

Version 2 — adding game logic

We will:
> Add test scenarios
> Add Player class
> Add methods to make moves, test for winning

31

Refining the interactions

Updating the Game and
printing it should be
separate operations.
The Game should ask
the Player to make a
move, and then the
Player will attempt to do
so.

We will want both real and test Players, so the Driver should
create them.

Driver

create

Game Player X Player Y

print

done?

update

print

done?

update

create

create

move

move

move

move

Mock Objects

32

A mock object simulates the behaviour of a real object
in a controlled way to support automated testing.

MockTest case Real
Object

interacts simulates

To simulate a scripted game, we can use a “mock”
Player that plays a fixed sequence of moves.

A mock object implements the interface of a real object and
replaces it in the context of a test case to simulate a deterministic
scenario in a cheap and controlled way. A mock object can
simulate a database, a user, a random environment, etc.

NB: Martin Fowler distinguishes between mock objects, stubs,
and other kinds of test objects that double for a real object:

http://martinfowler.com/articles/mocksArentStubs.html

33

Testing scenarios

Our test scenarios will play and test scripted games
@Test public void testXWinDiagonal() {

checkGame("a1\nb2\nc3\n", "b1\nc1\n", "X", 4);
}
// more tests …

public void checkGame(String Xmoves, String Omoves,
String winner, int squaresLeft) {

Player X = new Player('X', Xmoves); // a scripted player
Player O = new Player('O', Omoves);
TicTacToe game = new TicTacToe(X, O);
GameDriver.playGame(game);
assertEquals(winner, game.winner().name());
assertEquals(squaresLeft, game.squaresLeft());

}

The checkGame() method will run a scripted game, with
moves for players X and Y. The scripts each consist of a string
containing multiple lines, one for each move of a given player.
The mock Players are instantiated, and the game is played to the
end. The test method checks if the expected player wins, and if
the the expected number of squares are left unoccupied.
Note how the mock Players are injected into the game object: at
no point is the game aware that the players are not real objects.

34

Running the test cases

Player O moves: O at c1
3 | |
 ---+---+---
2 | X |
 ---+---+---
1 X | O | O
 a b c
Player X moves: X at c3
3 | | X
 ---+---+---
2 | X |
 ---+---+---
1 X | O | O
 a b c
game over!

3 | |
 ---+---+---
2 | |
 ---+---+---
1 | |
 a b c
Player X moves: X at a1
3 | |
 ---+---+---
2 | |
 ---+---+---
1 X | |
 a b c
...

Although it may be amusing to see the output of the test game,
tests are supposed to be silent, and only report success or failure.
Later we shall see how to suppress the test output.

35

The Player

public class Player {
protected final char mark;
protected final BufferedReader in;

public Player(char mark) {
this(mark, new BufferedReader(

new InputStreamReader(System.in)
));

}

We use different constructors to make real or test Players:

A real player reads from the standard input stream:

This constructor just calls another one ...
...

Note the call to this(…) within the constructor. This is a feature
peculiar to Java that allows one constructor to call another
without invoking new.
In the code of the Player, we want to be able to read a line of
input at a time, either from a script, or from the standard terminal
input object, System.in.
To read a line at a time, it turns out we need a
BufferedReader, but System.in does not support this
interface. As it turns out, we can wrap System.in as an
InputStreamReader, and then use that to instantiate the
BufferedReader that we need.
This is a good example of the Adapter design pattern.

36

Player constructors ...

But a Player can be constructed that reads its moves from any input
buffer:

This constructor is not intended to be called directly.
...

protected Player(char initMark, BufferedReader initIn) {
mark = initMark;
in = initIn;

}

Constructors are normally public, since they are intended to be
used by clients to instantiate objects. The use of a protected
constructor is unusual, but very useful. In this case we avoid
writing the same code twice, and can share this code between the
other public constructors. By declaring the constructor protected,
we prevent external clients from using it to directly instantiate
objects.

Player constructors ...

37

public Player(char mark, String moves) {
this(mark, new BufferedReader(

new StringReader(moves)
));

}

public Player() { this(' '); }

A test Player gets its input from a String buffer:

The default constructor returns a dummy Player representing “nobody”

The fact that:
new Player(‘ ‘);

creates a player representing “nobody” is perhaps somewhat
obscure. How could you use inheritance to make the intent more
clear?

Roadmap

38

> The iterative software lifecycle
> Responsibility-driven design
> TicTacToe example

—Identifying objects
—Scenarios
—Test-first development
—Printing object state
—Testing scenarios
—Representing responsibilities as contracts

39

Tic Tac Toe Contracts

Explicit invariants:
> turn (current player) is either X or O
> X and O swap turns (turn never equals previous turn)
> game state is 3×3 array marked X, O or blank
> winner is X or O iff winner has three in a row

Implicit invariants:
> initially winner is nobody; initially it is the turn of X
> game is over when all squares are occupied, or there is a winner
> a player cannot mark a square that is already marked

Contracts:
> the current player may make a move, if the invariants are respected

40

Encoding the contract

We must introduce state variables to implement the
contracts

public class TicTacToe {
static final int X = 0; // constants
static final int O = 1;
protected char[][] gameState;
protected Player winner = new Player(); // = nobody
protected Player[] player;
protected int turn = X; // initial turn
protected int squaresLeft = 9;

...

41

Supporting test Players

The Game no longer instantiates the Players, but accepts
them as constructor arguments:

public TicTacToe(Player playerX, Player playerO)
{ // ...

player = new Player[2];
player[X] = playerX;
player[O] = playerO;

}

Invariants

42

protected boolean invariant() {
return (turn == X || turn == O)

&& (this.notOver()
|| this.winner() == player[X]
|| this.winner() == player[O]
|| this.winner().isNobody())

&& (squaresLeft < 9 // else, initially:
|| turn == X && this.winner().isNobody());

}

These conditions may seem obvious, which is exactly why they
should be checked ...

Assertions and tests often tell us what methods should be
implemented, and whether they should be public or protected.

43

Delegating Responsibilities

When Driver updates the Game, the Game just asks the
Player to make a move:

Note that the Driver may not do this directly!

...

public void update() throws IOException {
player[turn].move(this);

}

44

Delegating Responsibilities ...

The Player, in turn, calls the Game’s move() method:

public void move(char col, char row, char mark) {
assert(notOver());
assert(inRange(col, row));
assert(get(col, row) == ' ');
System.out.println(mark + " at " + col + row);
this.set(col, row, mark);
this.squaresLeft--;
this.swapTurn();
this.checkWinner();
assert(invariant());

}

Note how the the use of Design by Contract simplifies our code.
We do not have to implement any special logic here to handle
possible errors, but we simply assert our pre-conditions and then
execute straight-line code.
Since this code modifies the game’s state, we also check that our
invariant holds at the end.

45

Small Methods

Introduce methods that make the intent of your code clear.

Well-named variables and methods typically eliminate the
need for explanatory comments!

public boolean notOver() {
return this.winner().isNobody()

&& this.squaresLeft() > 0;
}
protected void swapTurn() {

turn = (turn == X) ? O : X;
}

46

Accessor Methods

Accessor methods protect clients from changes in
implementation:

✎ When should instance variables be public?
✔ Almost never! Declare public accessor methods instead.

public Player winner() {
return this.winner;

}
public int squaresLeft() {

return this.squaresLeft;
}

47

getters and setters in Java

Accessors in Java are known as “getters” and “setters”.
—Accessors for a variable x should normally be called getx() and
setx()

48

Code Smells — TicTacToe.checkWinner()

✎Duplicated code stinks!  
How can we clean it up?

protected void checkWinner() {
char player;
for (char row='3'; row>='1'; row--) {
player = this.get('a',row);
if (player == this.get('b',row)
&& player == this.get('c',row)) {
this.setWinner(player);
return;

}
}

for (char col='a'; col <='c'; col++) {
player = this.get(col,'1');
if (player == this.get(col,'2')

&& player == this.get(col,'3')) {
this.setWinner(player);
return;

}
}
player = this.get('b','2');
if (player == this.get('a','1')

&& player == this.get('c','3')) {
this.setWinner(player);
return;

}
if (player == this.get('a','3')

&& player == this.get('c','1')) {
this.setWinner(player);
return;

}
}

This code is long and repetitive. Here we look for a winning row,
column or diagonal, each time checking three squares in
sequence.
Right now it is not obvious how to simplify the repetitive code.
Later, when we generalize the game, we will see that we can
solve the problem in a much more elegant way …

49

GameDriver

In order to run test games, we separated Player instantiation from Game
playing:

✎How can we make test scenarios play silently?

public class GameDriver {
public static void main(String args[]) {

try {
Player X = new Player('X');
Player O = new Player('O');
TicTacToe game = new TicTacToe(X, O);
playGame(game);

} catch (AssertionException err) {
...

}
}

50

What you should know!

✎ What is Iterative Development, and how does it differ
from the Waterfall model?

✎ How can identifying responsibilities help you to design
objects?

✎ Where did the Driver come from, if it wasn’t in our
requirements?

✎ Why is Winner not a likely class in our TicTacToe design?
✎ Why should we evaluate assertions if they are all

supposed to be true anyway?
✎ What is the point of having methods that are only one or

two lines long?

51

Can you answer these questions?

✎ Why should you expect requirements to change?
✎ In our design, why is it the Game and not the Driver that

prompts a Player to move?
✎ When and where should we evaluate the TicTacToe

invariant?
✎ What other tests should we put in our TestDriver?
✎ How does the Java compiler know which version of an

overloaded method or constructor should be called?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

