
Oscar Nierstrasz

7. Inheritance and Refactoring

...

...

AbstractBoardGame
abstract

+create()
...

...
TicTacToe

+update()
+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int

«interface»
BoardGame

+create()
...

...
Gomoku

2

Inheritance and Refactoring

Source
> Wirfs-Brock & McKean, Object Design — Roles,

Responsibilities and Collaborations, 2003.

Roadmap

3

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

Roadmap

4

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

5

What is Inheritance?

Inheritance in object-oriented programming languages is a
mechanism to:
—derive new subclasses from existing classes
—where subclasses inherit all the features from their parent(s)
—and may selectively override the implementation of some features.

Seen strictly as a programming language feature, inheritance can
be understood as mechanism to incrementally modify classes. A
subclass inherits all the features of its parent class (or classes),
may add new features, and may modify or extend inherited
features.
In most object-oriented languages, “features” include both
instance variables and methods.

6

Inheritance mechanisms

OO languages realize inheritance in different ways:
self dynamically access subclass methods

super statically access overridden, inherited methods
multiple

inheritance inherit features from multiple superclasses

abstract classes partially defined classes (to inherit from only)
mixins build classes from partial sets of features

interfaces specify method argument and return types

subtyping guarantees that subclass instances can be
substituted for their parents

Inheritance in Java supports self (this), super (super), single
inheritance, abstract classes (abstract), no mixins (but these
can be simulated by aspects in AspectJ), interfaces, and
subtyping.
Furthermore, Java supports access modifiers (public, private,
protected and package scopes), and overloaded methods (same
method name, but different argument types).

7

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other
interesting games that can be played by two players with a
board and two colours of markers.

Example: Go-moku
“A Japanese game played on a go board with players alternating
and attempting to be first to place five counters in a row.”

— Random House

We would like to implement a program that can be used to
play several different kinds of games using the same game-
playing abstractions (starting with TicTacToe and Go-moku).

8

Inheritance is used for three orthogonal, but
related purposes

Conceptual hierarchy (domain modeling):
> Go-moku is-a kind of Board Game; Tic Tac Toe is-a kind of

Board Game

Polymorphism (design):
> Instances of Gomoku and TicTacToe can be uniformly

manipulated as instances of BoardGame by a client program

Software reuse (implementation):
> Gomoku and TicTacToe reuse the BoardGame interface
> Gomoku and TicTacToe reuse and extend the BoardGame

representation and the implementations of its operations

Conceptual hierarchy refers to specialization (is-a) in the domain:
a student is a person, a car is a vehicle. When we model domain
objects in our programs we use inheritance to express the is-a
relationship in the code.
Polymorphism refers to the fact that objects may have many
types. This is very useful as we can then write code that can
uniformly manipulate different kinds of objects, as long as they
conform to the interface we require. A graphics program can
manipulate many kinds of graphical shapes. The payroll program
can deal uniformly with different kinds of employees.
Software reuse refers to the fact that subclasses inherit all the
code of their parents.
These three users of inheritance are orthogonal, that is, we can
have any one without the other two. When we apply object-
oriented design principles consistently however, we often have all
three at the same time.

Roadmap

9

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
—interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

10

Class Diagrams

The TicTacToe class
currently looks like this:

Key
- private feature

protected feature

+ public feature

create() static feature
checkWinner() abstract feature

+create(Player, Player)
+update()
+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int
#set(char, char, char)
#get(char, char) : char
#swapTurn()
#checkWinner()
#inRange(char col, char row) : boolean

#gameState : char [3][3]
#winner: Player
#turn : Player
#player : Player[2]
#squaresLeft : int

TicTacToe

A UML class diagram models one or more classes and their
relationships. These diagrams may be used to model any kind of
domain. Here we model our Java code design, but we can also
model real-world objects.
A UML class has up to three compartments, representing the class
name, the state (instance variables) and the behaviour (methods).
The second and third parts are optional. You are not required to
list all features, just those of interest for our model. Give at least
the names of features. You may also indicate the type of each
feature, if you wish, and its scope.
Static features (i.e., belong to the class, not instances) are
underlined. Abstract features are indicated in italics.

11

A bad idea ...

Why not simply use inheritance for
incremental modification?

Exploiting inheritance for code reuse
without refactoring tends to lead to:

> duplicated code (similar, but not
reusable methods)

> conceptually unclear design
(arbitrary relationships between
classes)

Gomoku is not a kind of TicTacToe

...

#gameState : char [3][3]
...

TicTacToe

+create()
-checkWinner()
...

-gameState : char [19][19]
...

Gomoku

A naive view of inheritance is purely as a mechanism for reuse:
“We already have the code for TicTacToe, so let’s inherit that and
just modify what needs to be changed.”
This kind of approach very quickly leads to a messy and confused
design. A better strategy is to first faithfully model the domain
concepts. With this approach, polymorphism and software reuse
often come for free afterwards.

12

Class Hierarchy

Both Go-moku and Tic Tac
Toe are kinds of Board games
(IS-A).
We would like to define a
common interface, and factor
the common functionality into
a shared parent class.

Behaviour that is not shared
will be implemented by the
subclasses.

...

...

AbstractBoardGame
abstract

+create()
...

...
TicTacToe

+update()
+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int

«interface»
BoardGame

+create()
...

...
Gomoku

Roadmap

13

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

14

Iterative development strategy

We need to find out which TicTacToe functionality will:
— already work for both TicTacToe and Gomoku
— need to be adapted for Gomoku
— can be generalized to work for both

Example: set() and get() will not work for a 19×19 board!
Rather than attempting a “big bang” redesign, we will iteratively redesign our

game:
— introduce a BoardGame interface that TicTacToe implements
— move all TicTacToe implementation to an AbstractBoardGame parent
— fix, refactor or make abstract the non-generic features
— introduce Gomoku as a concrete subclass of AbstractBoardGame

After each iteration we run our regression tests to make sure nothing is
broken!

✎ When should you run your (regression) tests?
✔ After every change to the system.

15

Version 3 (add interface)

We specify the interface both subclasses should implement:

Initially we focus only on abstracting from the current
TicTacToe implementation

public interface BoardGame {
public void update() throws IOException;
public void move(char col, char row, char mark);
public Player currentPlayer(); // NB: new method
public Player winner();
public boolean notOver();
public int squaresLeft();

}

16

Speaking to an Interface

Clients of TicTacToe and Gomoku should only depend on the
BoardGame interface:

Speak to an interface, not an implementation.

public class GameDriver {
public static void main(String args[]) {

Player X = new Player('X');
Player O = new Player('O');
playGame(new TicTacToe(X, O));

}

public static void playGame(BoardGame game) {
...

}

If your code is polymorphic, i.e., will handle objects belonging to
different classes, then it is good practice to define an interface
that these objects should conform to, and to make you code
depend only on this interface, not on any of the concrete classes.
By keeping your code independent of specific classes, later
implementors can design their own class hierarchies that
implement your interface, but are fully independent of the classes
existing at this time.

Roadmap

17

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

18

Quiet Testing

Our current TestDriver prints the state of the game after each move,
making it hard to tell when a test has failed.
Tests should be silent unless an error has occurred!

NB: we must shift all responsibility for printing to playGame().

public static void playGame(BoardGame game, boolean verbose) {
...

if (verbose) {
System.out.println();
System.out.println(game);

...
}

19

Quiet Testing (2)

A more flexible approach is to let the client supply the PrintStream:

The TestDriver can simply send the output to a Null stream:

public static void playGame(BoardGame game, PrintStream out) {
try {

do { // all printing must move here …
out.println();
out.println(game);
out.print("Player "

+ game.currentPlayer().mark() + " moves: ");
…

playGame(game, System.out);
playGame(game, new PrintStream(new NullOutputStream()));

20

NullOutputStream

A Null Object implements an interface with null methods:

Null Objects are useful for eliminating flags and switches.

public class NullOutputStream extends OutputStream {
public NullOutputStream() { super(); }

// Null implementation of inherited abstract method
public void write(int b) throws IOException { }

}

Flags are a well-known idiom and are easy to implement, but they
can clutter your code if many parts depend on the value of the
flag. In this case, we would need to check the flag before every
single print statement. Alternatively we would have to implement
our own print method that checks the flag, and be sure to use it
consistently everywhere in our code.
The Null Object pattern solves this problem through an elegant
application of polymorphism. A “Null Object” is an object that
implements a known interface by simply doing nothing. It
eliminates the need to explicitly check if that the target object is
null (or in this case, if a flag is not set to true), by plugging the
null object in where a regular object is expected.

21

TicTacToe adaptations

In order to pass responsibility for printing to the GameDriver, a
BoardGame must provide a method to export the current Player:

Now we run our regression tests and (after fixing any bugs) continue.

public class TicTacToe implements BoardGame {
...
public Player currentPlayer() {

return player[turn];
}

22

Version 4 — add abstract class

AbstractBoardGame will provide common variables and methods for
TicTacToe and Gomoku.

In a first step we include the entire TicTacToe implementation …

✎ When should a class be declared abstract?
✔ Declare a class abstract if it is intended to be subclassed, but not

instantiated.

public abstract class AbstractBoardGame implements BoardGame {
static final int X = 0;
static final int O = 1;
…

Roadmap

23

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
—iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

24

Refactoring

Refactoring is a process of moving methods and instance
variables from one class to another to improve the
design, specifically to:
—reassign responsibilities
—eliminate duplicated code
—reduce coupling: interaction between classes
— increase cohesion: interaction within classes

Refactoring consists of arbitrary changes to code that do not
change existing functionality. Refactoring operations are usually
carried out to either improve code quality (i.e., to remove code
smells, such as duplicated code), or to increase flexibility. In the
latter case, refactoring is generally driven by the need to add new
features. Due to limited flexibility, it may be hard to add the new
features.
In the case of our TicTacToe game, we increase flexibility by
adding the BoardGame interface. This in itself does not change
the functionality of the existing code, but it enables the addition
of the Gomoku functionality.
The book by Martin Fowler et al. provides a catalog of common
refactorings.

25

Refactoring strategies

We have adopted one possible refactoring strategy, first moving
everything except the constructor from TicTacToe to
AbstractBoardGame. Since all features are protected, TicTacToe
inherits everything:

We could equally have started with an empty AbstractBoardGame
and gradually moved shared code there.

public class TicTacToe extends AbstractBoardGame {
public TicTacToe(Player playerX, Player playerO)
{

super(playerX, playerO);
}

}

Refactoring support in IntelliJ

26

Many common
refactorings are
automated by IntelliJ
and other IDEs.

27

Version 5 — refactoring

Now we must check which parts of AbstractBoardGame are
generic, which must be repaired, and which must be
deferred to its subclasses:

> the number of rows and columns and the winning score may
vary
— introduce instance variables and an init() method
—rewrite toString(), invariant(), and inRange()

> set() and get() are inappropriate for a 19×19 board
— index directly by integers
—fix move() to take String argument (e.g., “f17”)
—add methods to parse string into integer coordinates

> getWinner() and toString() must be generalized

28

AbstractBoardGame

We introduce an abstract init() method for arbitrary sized boards:

public abstract class AbstractBoardGame ... {
protected abstract void init();
…

public AbstractBoardGame(Player playerX, Player playerO) {
player = new Player[2];
player[X] = playerX;
player[O] = playerO;
this.init();
squaresLeft = rows * cols;
…

}

And call it from the (abstract) constructor:

29

Specializing game construction

public class TicTacToe extends AbstractBoardGame {
public TicTacToe(Player playerX, Player playerO) {

super(playerX, playerO);
}
protected void init() {

rows = 3;
cols = 3;
winningScore = 3;

}
}

Subclasses can specialize construction
by implementing the init() method:

Note that although an abstract class cannot be instantiated, it can
still make sense to define a constructor for one. Subclasses can
then call the inherited constructor by calling super(…) (just as
a class can call its own constructor using this(…)).
The inherited constructor is a classic example of the Template
Method design pattern. It is a general method with the details of
initialization deferred to a hook method, namely the init()
method. Subclasses specialize the behaviour of the template
method (the constructor) by implementing the hook method.

30

BoardGame

Most of the changes in AbstractBoardGame are to
protected methods.
The only public (interface) method to change is move():

public interface BoardGame {
...
public void move(String coord, char mark);
...

}

Player

31

public void move(BoardGame game) throws IOException {
String line;
line = in.readLine();
if (line == null) {

throw new IOException("end of input");
}
game.move(line, this.mark());

}

The Player’s move() method can now be radically simplified:

Roadmap

32

> Uses of inheritance
—conceptual hierarchy, polymorphism and code reuse

> TicTacToe and Gomoku
— interfaces and abstract classes

> Iterative development
—Quiet testing

> Refactoring
— iterative strategies for improving design

> Top-down decomposition
—decomposing algorithms to reduce complexity

33

Version 6 — Gomoku

The final steps are:
> rewrite checkWinner()
> introduce Gomoku

—modify TestDriver to run tests for both TicTacToe and Gomoku
—print game state whenever a test fails

> modify GameDriver to query user for either TicTacToe or
Gomoku

34

Keeping Score

The Go board is too large to
search exhaustively for a winning
Go-moku score.
We know that a winning sequence
must include the last square
marked. So, it suffices to search
in all four directions starting from
that square to see if we find 5 in a
row.

✎Whose responsibility is it to
search?

After each move we must check if there is a winner. We can
safely assume that no winner was detected on the previous move,
so if there is a winner, it must include the last piece played.
To check for a winner, we therefore only need to start from that
piece, and check in all four directions if that piece includes 5 in a
row. (This is considerably cheaper than checking the entire board
after each move.)

35

A new responsibility ...

Maintaining the state of the board and searching for a winning run seem
to be unrelated responsibilities. So let’s introduce a new object (a
Runner) to run and count a Player’s pieces.

protected void checkWinner(int col, int row)... {
char player = this.get(col,row);
Runner runner = new Runner(this, col, row);
// check vertically
if (runner.run(0,1) >= this.winningScore)

{ this.setWinner(player); return; }
// check horizontally
if (runner.run(1,0) >= this.winningScore)

{ this.setWinner(player); return; }
...

}

36

The Runner

The Runner must know its game, its home (start) position,
and its current position:

public class Runner {
BoardGame game;
int homeCol, homeRow; // Home col and row
int col=0, row=0; // Current col & row

public Runner(BoardGame myGame, int myCol, int myRow) {
game = myGame;
homeCol = myCol;
homeRow = myRow;

}
...

37

Top-down decomposition

Implement algorithms abstractly, introducing helper methods for each
abstract step, as you decompose:

Well-chosen names eliminate the need for most comments!

public int run(int dcol, int drow)
throws AssertionException {
int score = 1;
this.goHome() ;
score += this.forwardRun(dcol, drow);
this.goHome();
score += this.reverseRun(dcol, drow);
return score;

}

38

Recursion

Many algorithms are more naturally expressed with recursion than
iteration.
Recursively move forward as long as we are in a run. Return the length
of the run:

protected int forwardRun(int dcol, int drow) {
this.move(dcol, drow);
if (this.samePlayer())

return 1 + this.forwardRun(dcol, drow);
else

return 0;
}

39

More helper methods

Helper methods keep the main algorithm clear and uncluttered, and are
mostly trivial to implement.

✎How would you implement move() and samePlayer()?

protected int reverseRun(int dcol, int drow) ... {
return this.forwardRun(-dcol, -drow);

}

protected void goHome() {
col= homeCol;
row = homeRow;

}

40

BoardGame

The Runner now needs access to the get() and inRange() methods
so we make them public:

✎ Which methods should be public?
✔ Only publicize methods that clients will really need, and will not break

encapsulation.

public interface BoardGame {
...
 public char get(int col, int row);
 public boolean inRange(int col, int row);
...

}

41

Gomoku

Gomoku is similar to TicTacToe, except it is played on a 19x19 Go
board, and the winner must get 5 in a row.

In the end, Gomoku and TicTacToe could inherit everything (except
their constructor) from AbstractGameBoard!

public class Gomoku extends AbstractBoardGame {
public Gomoku(Player playerX, Player playerO) {

super(playerX, playerO);
}
protected void init() {

rows = 19;
cols = 19;
winningScore = 5;

}
}

42

Abstract test framework

public abstract class AbstractBoardGameTest extends TestCase {
protected BoardGame game;

public AbstractBoardGameTest (String name) { super(name); }

public void checkGame(String Xmoves, String Omoves,
String winner, int squaresLeft) {

Player X = new Player('X', Xmoves);
Player O = new Player('O', Omoves);
game = makeGame(X,O);
GameDriver.playGame(game, new PrintStream(new NullOutputStream()));
assertEquals(game.winner().name(), winner);

assertEquals(game.squaresLeft(), squaresLeft);
}
abstract protected BoardGame makeGame(Player X, Player O) ;
…

}

Here again we see the use of the Template Method design pattern.
The template method is checkGame(), and the (protected)
hook method is makeGame(). Object-oriented frameworks
make heavy use of parameterized template methods to offer
generic implementations to clients. Client applications configure
the framework by implementing hook methods.

43

Gomoku tests …

Subclasses specialize the factory method for instantiating the game

public class GomokuTest extends AbstractBoardGameTest {
…

public void testXWinsDiagonal() {
checkGame("\naa\n" // nonsense input

+ "f6\ng5\ne7\nd8\nc9\n",
"b2\nh4\nc3\nd4\n",
"X", (19*19-9));

}

protected BoardGame makeGame(Player X, Player O) {
return new Gomoku(X, O);

}
}

44

What you should know!

✎ How does polymorphism help in writing generic code?
✎ When should features be declared protected rather than

public or private?
✎ How do abstract classes help to achieve code reuse?
✎ What is refactoring? Why should you do it in small steps?
✎ How do interfaces support polymorphism?
✎ Why should tests be silent?

45

Can you answer these questions?

✎What would change if we didn’t declare
AbstractBoardGame to be abstract?

✎How does an interface (in Java) differ from a class whose
methods are all abstract?

✎Can you write generic toString() and invariant() methods
for AbstractBoardGame?

✎ Is TicTacToe a special case of Gomoku, or the other way
around?

✎How would you reorganize the class hierarchy so that you
could run Gomoku with boards of different sizes?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

