
Oscar Nierstrasz

8. GUI Construction

2

GUI Construction

Sources
> David Flanagan, Java in a Nutshell: 5th edition, O’Reilly.
> David Flanagan, Java Foundation Classes in a Nutshell,

O’Reilly
> http://java.sun.com/docs/books/tutorial/uiswing

> ant.apache.org

http://ant.apache.org
http://ant.apache.org

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

3

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

4

5

A Graphical TicTacToe?

Our existing TicTacToe implementation is very limited:
> single-user at a time
> textual input and display

We would like to migrate it towards an interactive game:
> running the game with graphical display and mouse input

6

Model-View-Controller

Version 6 of our game implements a model of the game, without a GUI. The
GameGUI will implement a graphical view and a controller for GUI events.

The MVC paradigm separates an application from its GUI so that
multiple views can be dynamically connected and updated.

:MouseListener

clicks mouse

Model:TicTacToe

:MouseListener

1:mouseClicked()

1.1.1:update()

1.1.2:update()

Controller

Views

1.1:move()

The MVC paradigm is a way of breaking an application, or even
just a piece of an application’s interface, into three parts:

– the model, responsible for the domain logic
– the view, responsible for the graphical display, and
– the controller, responsible for synchronizing the two.

MVC was originally developed to map the traditional input,
processing, output roles into the GUI realm:

Input ⟶ Processing ⟶ Output

Controller ⟶ Model ⟶ View

In the diagram, a user clicks on a view of the game. This
generates a mouseClicked() event, which is handled by the
controller, a MouseListener object. This object interprets the
mouse click by invoking move() on the model, a TicTacToe
instance.
When the model changes state, it uses the Publish/Subscribe
design pattern infrastructure to inform the views. These then
update themselves to reflect the updated state.

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout

Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

7

8

AWT Components and Containers

The java.awt package defines GUI components, containers and their
layout managers.

NB: There are also many graphics classes to define colours, fonts,
images etc.

Component
A Container is a
component that may
contain other
components.

Container LabelButton

Panel Window

java.applet.Applet

A Panel is a
container inside
another container.
(E.g., an Applet
inside a browser.)

Frame

A Frame is a top-
level Window

The Abstract Windowing Toolkit (AWT) provides basic facilities
for creating graphical user interfaces (GUIs) and also for drawing
graphics. The GUI features are layered on top of the native GUI
system of the underlying platform. In other words if you create a
graphical button, you will get a Windows button or a Mac button
depending on the platform on which the application is running.
The root of the hierarchy is Component (every AWT component
is a Component). Primitive components like Button or
Label have no subparts. Composite components are all
subclasses of Container.

9

Swing JComponents

The javax.swing package defines GUI components that can
adapt their “look and feel” to the current platform.

Swing is a newer GUI toolkit, an extension to AWT. GUIs built
with Swing are meant to automatically emulate the native “look
and feel” of the underlying platform, so instead of looking like a
“Java app”, they look like native Mac or Windows applications.
Swing components are “lightweight”, in that they do not rely on
underlying platform.
The root of the Swing hierarchy is JComponent. Since for
technical reasons, JComponent inherits from
java.awt.Container, this leads to a somewhat messy
hierarchy — note that although JButton indirectly inherits from
Container, it is not a composite (Swing) object.

10

Swing Containers and Containment

Jbutton b = new Jbutton(“Push me”);
JPanel p = new Jpanel();
p.add(b);

Swing Containers may contain other Components

In order to create a GUI, components must be arranged inside a
container. A container is a component that can contain other
components. Main application windows, dialog boxes are
commonly used containers.
When building a GUI you must create your components, create
the containers that will hold the components and then add the
components to the containers.
Top level containers JFrame, JDialog, JWindow do not
inherit from JComponent. Instead they create a child
JRootPane to hold the components.

11

Layout Management

swing LayoutManagersawt LayoutManagers

The Layout Manager defines how the components are
arranged in a container (size and position).

JPanel p = new JPanel(new BorderLayout());

http://docs.oracle.com/javase/tutorial/uiswing/layout/using.html

Container contentPane = frame.getContentPane();
contentPane.setLayout(new FlowLayout());

A layout manager is an object that implements the layout manager
interface and determines the size and position of the components.
Although the components can provide size and alignment hints, a
container has the final say on the size and position of the
components.
Some containers such as JTabbedPane and JSplitPane
define a particular arrangement for their children. Others don’t.
When working with containers you must specify a
LayoutManager object to arrange the children within a
container.

12

An example: GridLayout

A GridLayout places components in a grid of cells.
> Each component takes up all the space in a cell.
> Each cell is the same size

GridLayout experimentLayout = new GridLayout(0,2);
…
compsToExperiment.setLayout(experimentLayout);
compsToExperiment.add(new Jbutton("Button 1"));
compsToExperiment.add(new Jbutton("Button 2"));

13

The GameGUI

The GameGUI is a JFrame using a BorderLayout (with a centre
and up to four border components), and containing a JButton
(“North”), a JPanel (“Center”) and a JLabel (“South”).

The central Panel itself
contains a grid of squares
(Panels) and uses a
GridLayout. NB: GameGUI is the only class that

differs substantially for AWT & Swing

:GameGUI

:Panel:Button :Label

:Panel :Panel...

14

Laying out the GameGUI

public class GameGUI extends JFrame implements Observer {
…
public GameGUI(String title) throws HeadlessException {

super(title);
game = makeGame();
…
this.setSize(…);
add("North", makeControls());
add("Center", makeGrid());
label = new JLabel();
add("South", label);
showFeedBack(game.currentPlayer().mark() + " plays");
…
this.show();

}

TicTacToe v7-swing

A class can implement the Observer interface when it wants to
be informed of changes in Observable objects. We’ll see more
on this very shortly …

Aside: A HeadlessException is thrown when code that is
dependent on a keyboard, display, or mouse is called in an
environment that does not support a keyboard, display, or mouse.

15

Helper methods

As usual, we introduce helper methods to hide the details of
GUI construction ...

protected Component makeControls() {
JButton again = new JButton("New game");
...
return again;

}

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

16

17

Interactivity with Events

> To make your GUI do something you need to handle
events
—An event is typically a user action — a mouse click, key stroke, etc.
—The Java Event model is used by Java AWT and Swing

(java.awt.AWTEvent and javax.swing.event)

18

Concurrency and Swing

> The program is always responsive to user interaction, no
matter what it is doing.

> The runtime of the Swing framework creates threads —
you don’t explicitly create them.

> The Event Dispatch thread is responsible for event
handling.

Every program has a set of threads where the application logic
begins. In standard programs there is just one thread — it invokes
the main method of some “main” class.
In Swing programs the initial threads do not have a lot to do.
Once the GUI is created the application is driven by the GUI
events, each of which causes the execution of a short task on the
event dispatch thread.

Each component registers event listener methods for events that
component is interested in.

19

Events and Listeners (I)

Instead of actively checking for GUI events, you can define callback
methods that will be invoked when your GUI objects receive events:

Hardware events ...
(MouseEvent, KeyEvent, ...)

AWT Framework/
Swing Framework

Callback methods

... are handled by subscribed
Listener objects

AWT/Swing Components publish events and (possibly multiple)
Listeners subscribe interest in them.

http://docs.oracle.com/javase/tutorial/uiswing/events/index.html

In procedural languages like C, callbacks are pointers to handler
functions that will be called when the event is raised. In an object-
oriented language, a callback is an object that implements a given
handler interface. The technology may be different, but the
underlying idea is the same: when an event is raised, all
registered handlers are invoked with arguments that specify the
raised event.

20

Events and Listeners (II)

Every AWT and Swing component publishes a variety of different events
(see java.awt.event) with associated Listener interfaces.

Component Events Listener Interface Listener methods
JButton ActionEvent ActionListener actionPerformed()

JComponent

MouseEvent

MouseListener

mouseClicked()

mouseEntered()

mouseExited()

mousePressed()

mouseReleased()

MouseMotionListener
mouseDragged()

mouseMoved()

KeyEvent KeyListener

keyPressed()

keyReleased()

keyTyped()

 ...

Every kind of event is associated with a particular listener
interface. The listener (i.e., the callback object or event handler)
simply implements the listener methods that it wants to react on.
For example, a MouseListener may decide to implement
mouseClicked() while ignoring all other mouse events, i.e.,
by implementing empty listener methods for mouseEntered()
etc.

Listening for Button events

21

protected Component makeControls() {
Button again = new Button("New game");
again.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
showFeedBack("starting new game ...");
newGame(); // NB: has access to methods

} // of enclosing class!
});
return again;

}

When we create the “New game” Button, we attach an ActionListener
using the Button.addActionListener() method:

We instantiate an anonymous inner class to avoid
defining a named subclass of ActionListener.

An inner class is simply a class nested inside another class.
An anonymous inner class is a nested class that has no name. It is
defined at the precise point where the class is instantiated, by
declaring a new instance of the parent class (or interface), and
supplying in curly braces after the name of the parent the
implementation of the anonymous subclass.
This feature is most often used when there is only a single
method to implement. Note that an instance of an anonymous
inner class has full access to the scope of its enclosing object,
including all methods and instance variables (even private ones).

Aside: Java 8 supports lambdas (anonymous functions), which
can be more concise that anonymous inner classes in some cases.

Anonymous functions in Java 8

22

protected Component makeControls() {
Button again = new Button("New game");
button.addActionListener(e -> (new

GameGUI(tictactoeFactory.getGame())).setVisible(true));
return again;

}

Since an ActionListener is “just a function” (only one method),
we can replace it in Java 8 with a so-called “lambda”:

A “lambda” is an “anonymous function” that takes an
argument (e), and returns a value (following the arrow).

An “anonymous function” or lambda expression is a nameless
function that is defined in-place. For example: x -> 1 is the
function that takes an argument x and returns 1. x->x is the
identify function that returns its argument x.
Anonymous functions are best known from so-called functional
programming languages. Java 8 introduced them to reduce the
complexity of anonymous inner classes in common cases where a
simple function is needed (also to catch up to Scala, a language
based on Java that already had lambdas).
See:

https://en.wikipedia.org/wiki/Anonymous_function#Java

23

Gracefully cleaning up

A WindowAdapter provides an empty implementation of the
WindowListener interface (!)

public class GameGUI extends JFrame implements Observer {
…
public GameGUI(String title) throws HeadlessException {

…
this.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {
GameGUI.this.dispose();
// NB: disambiguate “this”!

}
});
this.show();

}

The WindowListener interface requires seven callback
methods to be implemented. If you are only interested in one of
these seven events, instead of implementing six empty methods in
addition to the one you really want, you can simply inherit from
WindowAdapter, which provides seven empty methods, and
override the one you want. This is especially handy when
defining a very simply anonymous inner class, as is the case here.

We can also see another curious problem with inner classes: since
we have one object nested within another, the inner this hides
(or “shadows”) the outer this. We explicitly refer to the outer
object by prepending this with the name of its class
(GameGUI).

24

Listening for mouse clicks

We also attach a MouseListener to each Place on the board.

protected Component makeGrid() { ...
Panel grid = new Panel();
grid.setLayout(new GridLayout(3, 3));
places = new Place[3][3];
for (Row row : Row.values()) {

for (Column column : Column.values()) {
Place p = new Place(column, row);
p.addMouseListener(new PlaceListener(p, this));
...

return grid;
}

Since PlaceListener has an implementation that is longer
than a couple of lines, we implement it as a proper class, rather
than an anonymous inner class.

25

The PlaceListener

MouseAdapter is another convenience class that defines empty
MouseListener methods

public class PlaceListener extends MouseAdapter {
protected final Place place;
protected final GameGui gui;
public PlaceListener(Place myPlace, GameGUI myGui) {

place = myPlace;
gui = myGui;

}
...

The PlaceListener ...

26

public void mouseClicked(MouseEvent e) {
…
if (game.notOver()) {

try {
((GUIplayer) game.currentPlayer()).move(col,row);
gui.showFeedBack(game.currentPlayer().mark() + " plays");

} catch (AssertionError err) {
gui.showFeedBack(err.getMessage());

} catch (InvalidMoveException err) {
gui.showFeedBack(err.getMessage());

}
if (!game.notOver()) {

gui.showFeedBack("Game over -- " + game.winner() + " wins!");
}

} else {
gui.showFeedBack("The game is over!");

}
}

We only have to override the mouseClicked() method:

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

27

The Observer Pattern

28

> Also known as the publish/subscribe design pattern — to observe
the state of an object in a program.

> Observers registered to observe state changes in an observable
object, known as the subject.

> The subject maintains a set of observers to notify whenever its
state changes.

29

Our BoardGame Implementation

JFrame Observable

AbstractBoardGame

game : BoardGame
label : Jlabel
places : Places[][]

GameGUI

update()

«interface»
Observer

«interface»
BoardGame

TicTacToe Gomoku

*

Observer Observable / Subject

The TicTacToe game maintains a list of Observers to notify
whenever its state changes. The GameGui registers itself as an
observer to be notified whenever the game state changes.

30

Observers and Observables

A class can implement the
java.util.Observer interface
when it wants to be informed of
changes in Observable objects.

An Observable object can have
one or more Observers.

After an observable instance
changes, calling
notifyObservers() causes all
observers to be notified by means
of their update() method.

+ update(Observable, Object)

«interface»
Observer

*

+ addObserver(Observer)
+ deleteObserver(Observer)
+ notifyObservers()
+ notifyObservers(Object)
+ deleteObservers()
setChanged()
clearChanged()
+ hasChanged() : boolean
+ countObservers() : int

Observable

Caveat: Both are deprecated in Java 9

In Java, Observer is an interface providing an update()
method. Any object can be an observer by implementing this
simple interface.
Observable, on the other hand, is a class providing
implementations of several useful methods (addObserver(),
hasChanged(), setChanged(), notifyObservers()
etc.). To be an observable, a class should extend this existing
class and call setChanged() and notifyObservers() at
appropriate points in its own code (i.e., when its state changes,
and when it is done with any possibly mutating public method).
Caveat: Observer and Observable have been deprecated in Java 9!

https://docs.oracle.com/javase/9/docs/api/java/util/Observable.html

31

Adding Observers to the Observable

public class GameGUI extends JFrame implements Observer
{

...
 public GameGUI(String title) throws HeadlessException {
 super(title);
 game = makeGame();
 game.addObserver(this); // notify GameGui if state change

...

32

Observing the BoardGame

In our case, the GameGUI represents a View, so plays the
role of an Observer of the BoardGame TicTacToe:

public class GameGUI extends JFrame implements Observer
{

...
public void update(Observable o, Object arg) {

Move move = (Move) arg; // Downcast Object type
showFeedBack("got an update: " + move);
places[move.col][move.row].setMove(move.player);

}
}
...

View = Observer : here the BoardGame (Observable/Subject)
informs the view that the state of the game has changed by
invoking its update method. This then causes the GUI to reflect
the change of state.

33

Observing the BoardGame ...

The BoardGame represents the Model, so plays the role of
an Observable (i.e. the subject being observed):

public abstract class AbstractBoardGame
extends Observable implements BoardGame

{ ...
public void move(int col, int row, Player p) {

...
setChanged();
notifyObservers(new Move(col, row, p));

}
}

Note how the observable object separates notification into two
separate actions: first it calls setChanged() at specific points
in its code where it is certain that its state has changed, and
second, it calls notifyObservers() when it is done with a
possibly mutating action. Notification will only take place if the
state has truly changed.
By separating these two actions we (i) ensure that unnecessary
notifications are not issued, and (ii) we avoid the need for the
object itself to implement a way to check if its state has really
changed.

34

Handy way of Communicating changes

A Move instance bundles together information about a
change of state in a BoardGame:

public class Move {
public final int col, row; // NB: public, but final
public final Player player;
public Move(int col, int row, Player player) {

this.col = col; this.row = row;
this.player = player;

}
public String toString() {

return "Move(" + col + "," + row + "," + player + ")";
}

}

Move is a very simple data object, but it does serve two useful
purposes: (i) to bundle together the state change information, and
(ii) to provide a printable representation for feedback.

35

Setting up the connections

When the GameGUI is created, the model (BoardGame), view
(GameGui) and controller (Place) components are instantiated.

The GameGUI subscribes itself as an Observer to the game
(observable), and subscribes a PlaceListener to MouseEvents for
each Place on the view of the BoardGame.

:Place

:TicTacToe

:PlaceListener

:GameGUI

:GUIplayer

1:new

2:new

3:addObserver(this)

4:new

5:new

6:addMouseListener()

start

In the setup phase, we just create all the objects that play a role in
the game, and we configure the publish/subscribe relationships.
Note that Place is a listener (subscriber) to GameGUI events,
while the GameGUI is an observer (subscriber) to changes in the
game state. The publish/subscribe design pattern is therefore used
in two different ways to avoid entangling GUI code and game
logic: the GUI is completely unaware of game logic, and the
game is completely unaware of GUI code. This simplifies the
implementation of both parts and makes them both more robust to
further changes in design.

36

Playing the game

Mouse clicks are propagated from a Place (controller) to the
BoardGame (model):

If the corresponding move is valid, the model’s state changes, and
the GameGUI updates the Place (view).

:Place

:TicTacToe

:PlaceListener

:GameGUI
click

:GUIplayer

1:mouseClicked()
1.2.1.2.1:update()

1.1:currentPlayer()
1.2:move()

1.2.1:move()

1.2.1.1:set()

1.2.1.2:notifyObservers()

1.2.1.2.1.1:setMove()

Here we see how the game is played. The (human) player clicks
on the GUI, generating a mouse clicked event. This is propagated
to the PlaceListener which triggers the GUIPlayer to
make a move on the game. This in turn generates a change in the
game state, which finally causes the GUI to be updated.

37

public void move(int col, int row, Player p)
throws InvalidMoveException

{
assert this.notOver();
assert p == currentPlayer();
checkInput(this.get(col, row).isNobody(),

"That square is occupied!");
...

}

protected void checkInput(Boolean condition, String
message)

throws InvalidMoveException
{

if (!condition) {
throw new InvalidMoveException(message);

}
}

Checking user errors

> Assertion failures are generally a sign of errors in our program
— However we cannot guarantee the user will respect our contracts!
— We need special always-on assertions to check user errors

In Design by Contract, a failed assertion indicates an error in our
code. If our code is free of errors, the assertions should, in
principle, never fail.

But the square that the user selects to make a move is not under
the control of our code, so we need to check it and take
appropriate action if it fails. The checkInput() method is
meant to express this. Note that we do not take any action here,
except to raise an exception, which we will handle somewhere
else at a suitable level in our code.

38

Refactoring the BoardGame

Adding a GUI to the game affects many classes. We iteratively introduce
changes, and rerun our tests after every change ...

> Shift responsibilities between BoardGame and Player (both should be
passive!)
— introduce Player interface, InactivePlayer and StreamPlayer classes
— move getRow() and getCol() from BoardGame to Player
— move BoardGame.update() to GameDriver.playGame()
— change BoardGame to hold a matrix of Player, not marks

> Introduce GUI classes (GameGUI, Place, PlaceListener)
— Introduce GUIplayer
— PlaceListener triggers GUIplayer to move

> BoardGame must be observable
— Introduce Move class to communicate changes from BoardGame to

Observer
> Check user input!

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

39

40

Jar files

We would like to bundle the Java class files of our
application into a single, executable file
—A jar is a Java Archive
—The manifest file specifies the main class to execute

We could build the jar manually, but it would be better to
automate the process …

(http://java.sun.com/docs/books/tutorial/deployment/jar/)

Manifest-Version: 1.0
Main-Class: tictactoe.gui.GameGUI

The Java ARchive (JAR) file format enables you to bundle multiple files
into a single archive file. Typically a JAR file contains the class files and
auxiliary resources associated with applets and applications.
The mechanism for handling JAR files is a standard part of the Java
platform’s core API. You can click on the jar and the main class of the jar
specified by the “manifest” file will be executed.
JAR (Java Archive) is a platform-independent file format that aggregates
many files into one. Multiple Java applets and their requisite components
(.class files, images and sounds) can be bundled in a JAR file and
subsequently downloaded to a browser in a single HTTP transaction,
greatly improving the download speed. The JAR format also supports
compression, which reduces the file size, further improving the download
time. In addition, the author can digitally sign individual entries in a JAR
file to authenticate their origin.
jar -tvf junit.jar | more

41

Ant, Maven etc

Ant is a Java-based make-like utility that uses XML to specify dependencies
and build rules.

You can specify in a “build.xml”:
> the name of a project
> the default target to create
> the basedir for the files of the project
> dependencies for each target
> tasks to execute to create targets
> You can extend ant with your own tasks
> Ant is included in eclipse
 (Each task is run by an object that implements a particular Task interface.)

 (http://ant.apache.org/manual/index.html)

42

A Typical build.xml

<project name="TicTacToeGUI" default="all" basedir=".">
<!-- set global properties for this build -->
<property name="src" value="src"/>
<property name="build" value="build"/>
<property name="doc" value="doc"/>
<property name="jar" value="TicTacToeGUI.jar"/>

<target name="all" depends="jar,jdoc"/>

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>
<copy todir="${build}/tictactoe/gui/images">

<fileset dir="${src}/tictactoe/gui/images"/>
</copy>
<mkdir dir="${doc}"/>

</target>

<target name="compile" depends="init">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"

source="1.5" target="1.5"
classpath="junit.jar" />

</target>

…

43

…

<target name="jdoc" depends="init">
<!-- Generate the javadoc -->
<javadoc destdir="${doc}" source="1.5">
<fileset dir="${src}" includes="**/*.java"/>
</javadoc>

</target>

<target name="jar" depends="compile">
<jar jarfile="${jar}”

manifest="${src}/tictactoe/gui/manifest-run" basedir="${build}"/>
</target>

<target name="run" depends="jar">
<java fork="true" jar="${jar}"/>

</target>

<target name="clean">
<!-- Delete the ${build} directory -->
<delete dir="${build}"/>
<delete dir="${doc}"/>
<delete>

<fileset dir="." includes="TicTacToeGUI.jar"/>
</delete>

</target>
</project>

44

Running Ant

% ant jar
Buildfile: build.xml
init:
 [mkdir] Created dir: /Scratch/P2-Examples/build
 [mkdir] Created dir: /Scratch/P2-Examples/doc
compile:
 [javac] Compiling 18 source files to /Scratch/P2-Examples/build
jar:
 [jar] Building jar: /Scratch/P2-Examples/TicTacToeGUI.jar
BUILD SUCCESSFUL
Total time: 5 seconds

Ant assumes that the build file is called build.xml

Javadoc

> Javadoc generates API documentation in HTML format
for specified Java source files.

—Each class, interface and each public or protected method may be
preceded by “javadoc comments” between /** and */.

—Comments may contain special tag values (e.g., @author) and
(some) HTML tags.

45

46

Javadoc input

package p2.tictactoe;
/**
 * Minimal interface for Player classes that get moves from user
 * and forward them to the game.
 * @author $Author: oscar $
 * @version $Id: Player.java,v 1.5 2005/02/22 15:08:04 oscar Exp $
 */
public interface Player {

/**
 * @return the char representation of this Player
 * @see AbstractBoardGame#toString
 */
public char mark();
…

}

47

Javadoc output

48

GUI objects in practice ...

Consider other GUI frameworks (eg SWT from eclipse)
> org.eclipse.swt.* provides a set of native (operating system specific)

components that work the same on all platforms.

Use a GUI builder (eg IntelliJ GUI Designer)
> Interactively build your GUI rather than programming it — add the

hooks later.

> Model-View-Controller (MVC)
> Swing Components, Containers and Layout Managers
> Events and Listeners
> Observers and Observables
> Jar files, Ant and Javadoc
> Epilogue: distributing the game

Roadmap

49

50

A Networked TicTacToe?

We now have a usable GUI for our game, but it still
supports only a single user.

We would like to support:
> players on separate machines
> each running the game GUI locally
> with a remote “game server” managing the state of the

game

51

The concept

:GameServer

3:new

X:Player O:Player

:Gomoku

6:new

13:move9:move

2:new

1:join 5:join

4:new 7:new

12:move8:move
10:update 11:update

:GameConsole :GameConsole

:GameGUI :GameGUI14:update 15:update

In this scenario, the GameServer runs on a dedicated server in
a local area network. A user can start up a client application
running a GameConsole on another client machine on the same
network. This causes the GameServer to create a new game
instance with a Player X connected to the GameGUI running
on the client machine. When a second player requests to join the
game, the Player O will be created and be connected as a target
of actions of that client’s GUI.
When either player makes a move on their machine’s GUI, the
move will be propagated to the virtual player on the server.
Whenever the game is updated on the server, both client GUIs
will be updated.

52

Remote Method Invocation

A client may look up up the service using the public name, and obtain a local
object (stub) that acts as a proxy for the remote server object (represented by a
skeleton).

RMI allows an application to register a Java object under
a public name with an RMI registry on the server
machine.

registry

1a:new Server()

main

serverskeletonstub

client

2a:Naming.bind (name, server)1b:Naming.lookup(name)

2b:server.service()

All this works with a dedicated Java API called RMI, supporting
remote method invocation. On each of the machines in an RMI
application, remote objects are represented locally by “stub”
objects that are responsible for handling the communication.
To invoke a method on a remote object, you simply invoke a
normal method on the local stub. The stub translated the method
call to network communication to a remote skeleton object that
translates the communication back to a normal call to the remote
object on that machine.
The tricky part is what happens to the method arguments: all
arguments are either serialized objects that are recreated on the
remote machine, or they are themselves remote objects passed by
reference (and represented by a stub at the receiving end).
In our design, the Game, the GameServer and the Observer
are remote objects, and the Move objects are serialized.

53

Playing the game

1d:update() ... 1c:update()

:GameObserver

:GameGUI

:Place

:PlaceListener

:WrappedObserverskel stub

:Gomoku

:PassivePlayer

:GameProxy

click

1a:mouseClicked()

1.1a:move() ... 1b:move()

stub skel

1.2b:move()

1.2.1b:move()

1.2.1.1b:update()1.1d:update()

1.1.1d:setMove()

1.
1b

:c
ur

re
nt

Pl
ay

er
()

Now we can clearly benefit from our separation of GUI and game
logic. The GUI runs on client machines and the game logic runs
on the server. Although translating the game to work with RMI is
not trivial, the impact on our existing design is quite limited. We
only have to introduce remote objects at the points where we
cross the boundary between the client and the server.

Caveat: RMI only really works well on a local area network due
to typical network security restrictions.

54

What you should know!

✎The TicTacToe game knows nothing about the GameGUI
or Places. How is this achieved? Why is this a good
thing?

✎What are models, view and controllers?
✎What is a Container,Component?
✎What does a layout manager do?
✎What are events and listeners? Who publishes and who

subscribes to events?
✎How does the Observer Pattern work?
✎Ant
✎ javadoc

55

Can you answer these questions?

✎How could you make the game start up in a new
Window?

✎What is the difference between an event listener and an
observer?

✎The Move class has public instance variables — isn’t this
a bad idea?

✎What kind of tests would you write for the GUI code?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

