UNIVERSITAT

11. A bit of Smalltalk

Oscar Nierstrasz

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

The origins of Smalltalk

TR Y W

ry»rprocessRedButton
hry> }pmggsquu-t

or)

Alto — Xerox PARC (1973)

Alan Kay’'s Dynabook project (1968

updateLevel: 296

AllClasses
SystemOrganizacion
‘Kernel Classes'
*Numbers'

‘Basic Data Seructures'|
'Sets and Dicronanes'

XEROX - teaming nessarcn
Group

This is @ resurrected version of the
Smallralk - 78 system running on e
Notetaker computer in 1579,

It has been exsended from the original,
matnly by fuing bugs (because e
Notetaker never Wens beyond a dema),
a res10ning feacures from
Srmalsal that hid (o be stripped
out (because of e Notetaker's limited
NArduare Tesources). Other features
have been added taking advantage of
Modern MAchings speed.

Enjoy!
Bert, Dan, Ted, Yoshiki, Alan
014

‘Graphical Objeces

gestures

Text Objects
e .

‘Panes and Menus'
‘Compdler'

[pe:

Inspect Window
Notify Window
Notify Windo
Paned Windg

» rron. commands'
1 unclassified’

classCommens
classini
encer ped

ormunderfdic
ormunderfdic:

Jrow
intrmenut
<ave

(LT g

= PNTTOTMD

]

”~
frame: S
melr\mvmuzcmmu ‘&‘

‘pensadmn’

gray

Smalltalk-78 windows

In the late 60s, Alan Kay predicted that in the foreseeable future
handheld multimedia computers would become affordable. He
called this a “Dynabook”. (The photo shows a mockup, not a real
computer.)

He reasoned that such systems would need to be based on object
from the ground up, so he set up a lab at the Xerox Palo Alto
Research Center (PARC) to develop such a fully object-oriented
system, including both software and hardware. They developed
the first graphical workstations with windowing system and
mouse.

Smalltalk-80

Everything is an object.

Everything is there, all the time.
First windowing system with mouse.
First graphical IDE.

Smalltalk-80 was introduced to the world in 1981 1n a now-
famous 1ssue of Byte Magazine. The “Smalltalk balloon™ refers to
this 1ssue.

https://archive.org/details/byte-magazine-1981-08

Smalltalk — a /ive programming environment

0o, Sqmi39 fenl 70T imege,

Welcome to Squeak - an open Smalltalk system.

W is?
Saqueak is a0 open source implementation of Smalltalk with an expansive and ragsdly
developng word of sbects ncluded

Saueak iInchades & fully integrated development environment. networking, sound
SYNUIesis a0 samping, speech synthesis. 2 & 3D graphics. arithmetic and dats
SUUCHUre libeares

The Squeskap ool (chck on > *SMLAMIA 0pen" t SAFE It) t0ol provides easy sccess
10 8 large range of packages and projects

Even the 1ools t produce the 25 own virtual machine (VM) are avallable 5o that you
can build your own - and most of the VM is written in Smalitalk. Not anly is all the
Smaitalk scurce code ncluded and changeable at wil, it is also completely open and
free. The Squeak system image runs bit-identically across all platforms, and VMs are
available for st about every Computer and cperating system available

To find out exactly which versicn of Squeak this is click on - *

Lfurther Documentacen

* @ Workspace @04 * @ Workspace
Velcste o the finade vermon of 39 of 7 o Sovember 2005 K Here are some of (e changes the! have tess o == 39 *f

You will fint mere secest vermons af BIG//VYY SUSSLCeR/
This Wil 1o wond % geotuce oiher Autribuns fuch a1 & develeger image and & fus v o
Sqsea) image

tevwser speedsy
Ve Bope et v Wi ceally appesciate s versien and et Squesk Wil help you making yeue Sas green g
pevmets resisry

You con sl parvogen W Spueak o Afferent kind of levels. This can te &r Hupie a0 -
Sihing Gusrms e beginner hit (heqinnersoNIts 1gosaK w0 40t) ase somane 10
or 1n e Gew B Grguemh-benlins SUMAR w0 A0
anrvering vormns -
Tinbng and repermag bugs ot W/ bugs snpare.do
TIHE oo wen Fi 400 SoMBATNAE ot ol rie
. For wavared gars ot
Taijing Foe e verae &
Crawnag new ok pesnact. frameveeks. applicawnt i siueek -

Vring srm

i ME repesiiory

v calor of M

Aot Yo & 11 o Tom et we woult like 10 tanks all Ga
FOrRInE That Jaruagemt w make s relesse & reslly §ood o
Ve know who you aewt

L Swphane Ducame set Marcss Denker ol v

Image Changes

Virtual machine Sources

Smalltalk 1s often bundled into a single, “one-click” application, but
there are actually four pieces that are important to understand.

Every user of Smalltalk can work with one or more Smalltalk images.
The image file contains a snapshot of all the objects of the running
system. Every time you quit Smalltalk, you can save and update this
snapshot. In addition, the changes file consists of a log of all changes
to the source code of that image, 1.¢., all new or changed classes and
all compiled methods. If your image crashes (which 1s possible since
Smalltalk allows you to do anything, even 1f that might be fatal), you
can restart your image and replay your changes, so nothing 1s lost.

In addition, the virtual machine and sources files may be shared
between users. The VM runs the bytecode of compiled methods and
manages the 1mage and changes file. Finally the sources file
(optional) contains all the source code of objects 1n the base image (so
you can not only explore this but modify it i1f you want).

Object-oriented language genealogy

1950 |
ALGOL 60
1960 ————————————————/—"
Simula 67
ALGOL 68
970 _:E>N§_ _____________________________
Smalltalk 72
1980] _____ Smalltalk 80 |- =»<~-~~--->g---
/
Objective (%J
1990 | LN
Squeak
200 _____ >
Pharo

2010

Stmula was the first object-oriented language, designed by Kristen
Nygaard and Ole Johan Dahl. Stmula was designed 1n the early 60s,
to support simulation programming, by adding classes and inheritance
to Algol 60. The language was later standardized as Simula 67.
Programmers quickly discovered that these mechanisms were useful
for general-purpose programming, not just simulations.

Smalltalk adopted the 1deas of objects and message-passing as the
core mechanisms, not just add-ons to a procedural language.

Stroustrup ported the 1deas of Simula to C to support stmulation

programming. The resulting language was first called “C with
classes”, and later C++.

Cox added Smalltalk-style message-passing syntax to C and called 1t
“Objective-C”.

Java mtegrated implementation technology from Smalltalk and syntax
from C++.

Squeak and Pharo are modern descendants of Smalltalk-80.

Smalltalk vs. Java vs. C++

Smalltalk Java C++
Object model Pure Hybrid Hybrid
Garbage collection Automatic Automatic Manual
Inheritance Single Single Multiple
Types Dynamic Static Static
Reflection Fully reflective | Introspection Introspection
Modules Categories, Packages Namespaces

namespaces

The most important difference between Smalltalk, Java and C++,
1s that Smalltalk supports “live programming”. Whereas 1n Java
and C++ you must first write source code and compile it before
you run anything, in Smalltalk you are always programming 1n a
live environment. You incrementally add classes and compile
methods within a running system.

As a consequence, Smalltalk has to be fully reflective, allowing
you to reify (“turn in objects”) all aspects of the system, and
change them at run time. The only thing you cannot change from
within Smalltalk 1s the virtual machine.

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

Literals and constants

Strings & Characters

'hello’ Sa

Numbers 1 3.14159
Symbols #yadayada
Arrays #(1 2 3)

Pseudo-variables

self super

Constants

true false

Everything is an object in Smalltalk, including these literal and
constant values.

Strings are just special kinds of ordered collections holding
character values.

Smalltalk supports various kind of numbers, and also supports
radix notation for numbers in different bases.

Symbols behave much like strings, but are guaranteed to be
globally unique. They always start with a hash (#).

In addition to self, super, true and false, there are only
two further reserved names in Smalltalk: nil and

thisContext. (The latter is only needed for meta-
programming!)

Three kinds of messages

> Unary messages 5 factorial
Transcript cr

T — T—

> Binary messages 3 + 4

> Keyword messages

3 raisedTo: 10 modulo: 5

Transcript show: 'hello world’

Smalltalk has a very simple syntax. There are just three kinds of
messages:

1.Unary messages consist of a single world sent to an object (the

result of an expression). Here we send factorial to the

object 5 and cr (carriage return) to the object Transcript.
(Aside: upper-case variables are global in Smalltalk, usually
class names. Transcript 1s one of the few globals that 1s not a
class.)

2.Binary messages are operators composed of the characters +,
-, %/, & =,>,|,< ~ and Q.
Here we send the message “+ 4 to the object 3.

3.Keyword messages take multiple arguments. Here we send

“raisedTo: 10 modulo: 5”to 3 and “show: 'hello
world'” to Transcript.

Precedence

First unary, then binary, then keyword:

2 raisedTo: 1 + 3 factorial 128

Same as: 2 raisedTo: (1 + (3 factorial))

Use parentheses to force order:

1 + 2 % 3 9 (!)
1 + (2 * 3) |7

(—

The precedence rules for Smalltalk are exceedingly simple: unary
messages are sent first, then binary, and finally keyword
messages. Use parentheses to force a different order.

Note that there 1s no difference 1n precedence between binary
operators.

Blocks

Block

/ \

1 tqo\: 57- :n\Transcript show: n; cr |
Keyword message Block argument Cascade

@ ® Glamorous Toolkit

gt Transcript O x

aprwWNRE

13

A typical method in the class Point

Method name Argument Comment

VoS

"Answer whether the receiver 1s neither
below nor to the right of aPoint.”

" X <= aPoint x and: [K\<= aPoint vy]

lomef——

Return Binary message Block

, Keyword message
Instance variable

(2@3) <= (5@6) true

R — e —

The slide shows the <= method of the Point class as it appears
in the IDE.

The first line lists the method name and its formal parameters. In

this case we are defining the method for the <= selector. (In
Smalltalk, method names are called “selectors”, because when a
message 1s received, the selector 1s used to select the method to
respond.)

Comments are enclosed 1n double quotation marks (strings are
enclosed in single quotes).

The body of this method consists of a single expression. The caret

(™) 1s areserved symbol in Smalltalk and denotes a return value.
A block 1s enclosed 1n square brackets and denotes an expression

that may be evaluated. In this case, the Boolean and : method
will only evaluate the block if 1ts receiver (1.e., the subexpression

to the left of the and:) evaluates to true.

Statements and cascades

Temporary variables
\ Statement

| p pen | /

p := 100@100.

,/ﬁgﬁ := Pen new.

pen up.
pen goto: p; down; goto: p+p

&

Cascade

Assignment

This 1s a code snippet (not a method) that may be evaluated 1n the
Playground.

Here we see that statements are expressions separated by periods (.).

Even though Smalltalk does not support type declarations, /ocal
variables must still be declared, appearing within or-bars (|).

A variable 1s bound to a value using the assignment operator (:=).

Smalltalk supports a special syntax, called a cascade, to send multiple
messages to the same receiver. Messages 1n a cascade are separated
by semi-colons (;). In this case we send the messages “goto: p”,
“down”, and finally “goto: p+p” to the receiver p. (This draws a
line from the Point 100@100to 200@200.)

Note that 100@100 looks like special syntax for Point objects, but
it 1s really just a Factory method of the Number class, which creates
a new Point instance.

Variables

> Local variables are delimited by | var|
Block variables by : var|

OrderedCollection>>collect: aBlock
"Evaluate aBlock with each of my elements as the argument.”
| newCollection |
newCollection := self species new: self size.
firstIndex to: lastIndex do:
[:index |
newCollection addLast: (aBlock value: (array at: index))].

A

newCollection

(OrderedCollection with: 10 with: 5) collect: [:each| each factorial

an OrderedCollection (3628800 120)

NB: Since source code for methods in the IDE does not show the
class of the method, it 1s a common convention in documentation
to add the missing class name, followed by two greater-than signs

(>>), as 1n this example.

This example serves mainly to show that blocks can take
arguments. The arguments are after the opening left square

bracket, and each 1s preceded by a colon (2).

The block:

:each| each factorial]

takes 1ts arguments from the receiver of collect:, the
collection holding 10 and 5.

Control Structures

> Every control structure is realized by message sends

max: aNumber

~ self < aNumber
1fTrue: [aNumber]

ifFalse: [self]

4 timesRepeat: [Beeper beep]

There are no built-in control constructs in Smalltalk. Everything
happens by sending messages!

Even a simple if statement 1s achieved by sending a message to a
boolean expression, which will then evaluate the block argument
only 1f i1t boolean 1s true.

Here we see that the max: method 1s implemented by sending
ifTrue:ifFalse: to the Boolean expression
self<aNumber. The ifTrue:ifFalse: method is itself
defined 1n the Boolean classes True and False.

(Try to imagine how it would be implemented, and then check 1n
the 1mage to see how it 1s done.)

Creating objects

> (Class methods

OrderedCollection new
Array with: 1 with: 2

> Factory methods

1@2 a Point
1/2 a Fraction

Ultimately all objects (aside from literals) are created by sending

the message new to a class. (The message new: 1s used to create
arrays of a given length.) Further constructors may be defined as
convenience methods on classes, for example,

Array with: 1 with: 2

will create an Array of length 2 using new:, and then initialize
it with the two arguments.

Other instance creation methods may be defined on the classes of
arguments used to create the objects. For example, to create a

Fraction, we send the message / to an Integer, with the
numerator as 1ts argument. This method will then actually create a

new Fraction for us.

Creating classes

> Send a message to a class (!)

Number subclass: #Complex
instanceVariableNames: 'real imaginary'

classVariableNames:

poolDictionaries:
category: 'ComplexNumbers'

Everything 1s an object, ergo classes are objects too!

To create a new class, you must send a message to an existing
class, asking 1t to create (or redefine) a subclass.

Since the class to be created probably does not yet exist, its name
1s not defined globally, so we must pass 1n the name as a symbol

(here #Complex).

We can also provide the names of its instance variables (or we
can update this later). Please 1gnore classVariableNames and
PoolDictionaries — they are almost never needed. The
“category” 1s the name of a related group of classes (something
like a poor man's package).

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

Pharo — a modern Smalltalk

XK) (> Pharo 8.0 - 64bit (stable).image
¢ Pharo Tools System Debugging Windows Help
x - 0O Welcome -
5
[] welcome to Pharo8.0.0 -

[] Changelog Phal'08.0.0

L] Learn Pharo _ build: 1124, commit: 0932da8
) Explore the Pharo Environment

|] Using External Packages
) More Documentation
|) Getting Help

Welcome to Pharo, an immersive live programming environment.
Pharo is a pure object-oriented programming language and a powerful 3 e e
environment, focused on simplicity and immediate feedback (think IDE and 0S ' & D Chioupis

rolled into one).

For more information, please visit here: http://pharo.org

Quick setup

Choose your preferred color theme: Light Theme or Dark Theme

DEEPINTO -~
Click if you have access to a: regular network connection or slow network |)|
< > O e ‘ ;

ALEXANDRE BERGEL - DAMIEN CASSOU
STEPHANE DUCASSE - JANNIK LAVAL

11 Welcome

15

Pharo 1s an open-source evolution of Smalltalk-80.

Download 1t from:
http://pharo.org

To learn how to use Pharo, start with the open-source book,
Pharo by Example:

http://books.pharo.org

To learn about more advanced features, continue with Deep into
Pharo

Glamorous Toolkit — a moldable Smalltalk

Tools

Playground

Transcript

Slideshows

Slideshow

Slideshow

Pharo 101

Gt is a “moldable” development environment
built on Pharo with native windows, software
analysis support, and a visualization engine

an

Coder Git

Morphic World Spotter

Slideshow

One rendering tree

Slideshow

Querying Code

Glamorous Toolkit

M-

Monitor Examples Explorer

Slideshow

Inspector views

Slideshow

Working with a REST API

blog.feenk.com
Post

Optimizing for happiness on
the Greater than Code
podcast

Episode 193 of the Greater
than Code podcast (1h13m)
features a conversation with
Tudor Girba covering a wide
spectrum of subjects ranging
from optimizing for happiness
to the power of storytelling
and our privilege and
responsibility as developers.

by Tudor Girba
2020-08-04 12:51

Post

Discovering Coder shortcuts
One of the first question
people ask when starting with
Glamorous Toolkit concerns
the list of editor shortcuts.
Indeed, these shortcuts are
not yet visible in the user
interface. Still, we should be
able to learn these shortcuts
from the system itself.

by Tudor Girba
2020-08-04 11:27

Post

Glamorous Toolkit v0.7.1214
beta

Glamorous Toolkit is now
beta.

16

GT offers a new graphical framework and a new set of tools for
software development on top of Pharo.

https://gtoolkit.com/download/

NB: Although GT is quite mature, it does not yet offer
replacements for all Pharo tools and features, so it 1s always

possible to escape the the “Morphic World” to access the
traditional tool set.

Two rules to remember

Everything is an object

(Nearly) everything in Smalltalk 1s an object, which means that
you can “‘grab 1t” and talk to it. Everything that you see on the
screen 1S an object, so you can interact with it programmatically.

The implementation of Smalltalk itself 1s build up of objects, so
you can grab these objects and explore them. In particular, all the
tools are objects, but also classes and methods are objects. This
feature 1s extremely powerful and leads to a style of programming
that 1s different from the usual edit/compile/run development

cycle.

Everything happens by
sending messages

The only way to make anything happen is by sending messages.
To ask “what can I do with this object?” 1s the same as asking
“what messages does 1t understand?”

The terminology of “message sending” 1s perhaps unfortunate, as
those new to Smalltalk often assume 1t has something to do with
network communication, but one should understand 1t as a
metaphor: you do not “call an operation” of an object, but you
politely ask 1t to do something by sending it a request (a
“message’). The object then decides how to respond by checking
to see 1f 1ts class has a “method” for handling this request. If it
does, 1t performs the method. If not, 1t asks 1ts superclass if it has
such a method, and so on. If this search fails, the object does not
understand the message (but let’s not get into that now!).

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use ft.

Try to answer the question

“How does this work?”
with
“l don’t care”.

Alan Knight. Smalltalk Guru

This slide 1s a paraphrase of:

Try not to care — Beginning Smalltalk programmers often have trouble
because they think they need to understand all the details of how a thing
works before they can use 1t. This means it takes quite a while before they can

master Transcript show: ’'Hello World'’.

One of the great leaps in OO 1s to be able to answer the question “How does
this work?”” with “I don’t care”.

alanknightsblog.blogspot.ch

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

Glamorous Toolkit

>

Playground

nn

Coder

b

Git

W\~

Monitor

eg

Exemplifier

E

Transcript

3

File system

o

Slideshows

glamoroustoolkit
atour

Inspector views

Working with a REST API

Coder

moldabledevelopment

Pharo 101

Spotter

moldableanalysis

Glamorous Toolkit

One rendering tree

Querying Code

Playground and Inspector

>

Playground

Play with code. Live.

W\

Monitor

3

File system

Save

Coder Git

eg El

Exemplifier Transcript

O

Morphic World

Quit

Why is itimportant?

And how else could we look at
this problem?

by Tudor Girba

2021-01-27 11:39

Mapping legacy software
crises

We untangle your software
legacy crises. How? Take a
tour guided by Wardley maps.

by Tudor Girba
2021-01-16 21:00

Glamorous Toolkit DEV v0.8.551

The Glamorous Toolkit 1s both a live programming environment
and a “moldable” IDE providing support for data exploration and
visualization. The core tools include a Playground for live
exploration of code, a Coder for editing and managing code
packages, a (it tool for managing repositories, and others.

Various tutorials and blogs are also available from the home
window.

The Playground

® " 0 Glamorous Toolkit
gt » Playground O x Q =
Y Page E Q E a ByteString (Hello world) i O Q m .
&, %d ,;] HSt:‘ling ldLive Iltems Tree Boxes Raw Print Connections
The Playground is Evaluating an
a place to evaluate expression opens
arbitrary Smalltalk an “inspector” on

expressions the result

You can select an expression in the Workspace and “do 1t”, “print
1t”, “inspect 1t”, or stmply “do 1t and go™.

NB: use the keyboard shortcuts instead of the menu or buttons!
The nspector tabs provide various views of the object, such as
the “raw” view showing the raw representation. The buttons open

various tools, such as a new inspector, or a Coder view of the
class.

Exploring objects and code

Glamorous Toolkit

gt » Playground O x

-

Page B2 Q a Smallinteger (7)

3 +p 4 Preview Integer Raw Print Connections Meta

ernel > Smallinteger
aNumber

"Primitive. Add the receiver to the
ument and answer with the result

if it is a SmallInteger. Fail 1if the 4
argument or the result is not a

SmallInteger Essential No Lookup. See
Obj4ct documentation whatIsAPrimitive."

primitive: 1>

il e A Send messages to objects

M i B arithmetic

self +» 1
eg » »i I 4 »

Expand methods in place ”

You can expand methods 1n place by clicking on the grey triangle.

You can also pull up a new playground from the bottom of any
inspector to evaluate arbitrary code.

NB: self 1s bound to the inspected object.

Finding seNders and iMplementors

gt » Playground O x

+
Page El

5 factbrial »
eg > >i 5 @)

#factorial gtSenders »

eg » >i I »
+

#factorial gtImplementors »

eg > i 2 »
+

Use keyboard shortcuts
or code snippets to find
method usages

Glamorous Toolkit

-

a GtSearchReferencesFilter (factorial references) i (m oM

Live Metrics Raw Print Connections Meta

Category ~ All +

Kernel-Tests-Extended > BlockClosureTest
testBenchFor

*Kernel-Tests-Extended

Kernel-Tests-Extended > BlockClosuresTestCase

testExamplel
self assert: (self examplel:» 5) equals:»
5 factorial»

v - ma| i B *Kernel-Tests-Extended

Brick-Editor > BrBenchmarkStyler
privateStyle: private

EnlumineurFormatterUl > EFExamples

bigExample:withMethodSignatureOnMultipleL' methods

EnlumineurFormatterUl > EFExamples

bigMethod:example: methods

EnlumineurFormatterUl > EFExamples

—m e ada ALr e JALM bl o AP e T -

To find all the implementations of a method, just position the mouse
within the method’s name, and evaluate Command+M (for iMplementors).
You can also find all methods that send it as a message by evaluating
Command+N (for seNders).

Gt also has extensive support for programmatically querying code. For

example, you can find the senders and implementors of the factorial
method by evaluating these snippets:

#factorial gtSenders

#factorial gtImplementors

Navigating to the class Search class

@ @ Glamorous Toolkit \

Jll " Pveround O x View class in Coder =
+ + X
Page El Q a Point ((1@2)) Browseclass |, M
1@e» 2 Raw Print Connections Meta .

E ’ : 2 2 + Icon Variable Value
=) self (1@2)
1 X i
z y 2

View class here

There are numerous ways to navigation to the class of an object.
You can view the class directly in the “Meta” tab, or open a
dedicated Coder pane with the “Browse” button.

Alternatively you can search for a class (or anything else) with
the Spotter, or open a new Coder pane and search there.

The Coder

® " 0 Glamorous Toolkit
gt » Playground Point O x Q =
I Package Hierarchy Class Hierarchy I Point - m Q fa +
tRCE e sty Superclass: Object
JenkinsTools-Core AsciiCharset
JenkinsTools-ExtraReport Character Package: Kernel Tag: BasicObjects
b Iobs ComPinedChar
b Jobe Tasts Margin | Methods =~ Comment References I Y +
Point ————————
Y Ksme Rectangle Cat All
ategory ~ i
BasicObjects gory
Chronology
Classes = comparing
Copying
Delays max arithmetic instance
Exceptions
: > comparing
Manifest Categories
Messaging *Bloc translateBy: transforming
Methods *Brick
Models FUstCocoN . approvedSelectorsForMethodFinder *Tool-Finder | | class
Numbers *Math-Operations-Extensio
. *Morphic-Core
Objects - r[')t IC gtR:theta: *GToolkit-BlocGraph-Layouts = class
arta-Core
Pragmas = e
ston-core
Processes accessing re deg rees: *Math-Operations-Extensions class
Protocols arithmetic . .
Extensions comparing settingInputWidgetForNode: *System-Settings-Browser | class
Kernel-BytecodeEncoders converting
» Kernel-Chronology-Extras copying Xsys L il AR

- avtant fiinAtinne

The Coder 1s a dedicated tool for editing and managing classes
and methods. You can view classes either within their package
hierarchy or class hierarchy.

You can also view the methods of a class, or the class comment,
or you can browse references to the class. Other panes will appear
if they are relevant such as examples.

Methods 1n Smalltalk are tagged by their category, such as
“comparing” or “instance creation”. Note that “class methods™
are analogous to static methods 1n Java — you invoke them by
sending the message to the class, not the object.

Point x: 1 y: 2

will create a new Point object 1@2.

Roadmap

> The origins of Smalltalk

> Syntax in a nutshell

> Pharo and Gt

> Demo — the basics

> Demo — live programming with Gt

Demo: Defining classes and methods

NN Glamorous Toolkit
gt » Playground M GtDemos 0O x Q =
+ + + x
a GtExampleWithResult (PostOffice >>#pc 1 (m] m a PostOffice('Jack' 'Jill') i O m a CollectionValueHolder[an OrderedCol 1 O m
Source Connections Graph Raw Print [0 Raw Print Connections Meta < Boxes Raw Print Connections Meta <
ciberics. 5 PostOica lcon Variable Value 1 . ' 2 i
postOfficeWithJackAndJille & self a PostOffice('Jack' 'Jill") Jack' | 'Jill
<gtE le>
|gpomep = e queue a CollectionValueHolder!

po := self postOfficeWithJack» .
(Customer named: » '3Jill') enters: po.
self assert: po waiting equals:» 2.
A

po

v - m i > i | eg ¥

This demo script can also be found 1n the same github repo listed
carlier.

Here we apply test-driven development to simulate a Post Office
serving customers.

Creating a class

et

Package Hierarchy

MCoder O x

Class Hierarchy

Packages

Yy vyvYyy

vy

Yy VvV Yy Y Y Y VY VY VvYYy

_UnpackagedPackage
Actlt

Alien-Core
Announcements-Core
Announcements-Core-Tests
Announcements-Help
AST-Core

AST-Core-Tests
AST-Core-Traits
Athens-Balloon
Athens-Cairo
Athens-Cairo-Tests
Athens-Core
Athens-Examples
Athens-Morphic
Athens-Text

Balloon

Balloon-Tests
BaselineOfAthens
BaselineOfBaselLibraries
BaselineOfBasicTools
BaselineOfBeacon
BaselineOfBeaconFFl
BaselineOfBitmapCharacterSet
BaselineOfBloc
BaselineOfBlocExamples
BaselineOfBlocExtensions
BaselineOfBlocPac

BaselineOfBlocPacExamples

Glamorous Toolkit

Pharo
1169 Packages

AST-Core
68 Classes, 7 Extension methods

AST-Core-Tests
21 Classes

AST-Core-Traits
1 Classes

ActIt
6 Classes

Alien-Core
13 Classes, 7 Extension methods

Announcements-Core
10 Classes

Announcements-Core-Tests
8 Classes

Announcements-Help
3 Classes

Athens-Balloon
12 Classes, 4 Extension methods

Athens-Cairo
35 Classes, 2 Extension methods

Adhane Ffaswvan _Tacdke~

Class

Trait Package

SmacCC

m

PostOfficeTestExamples

Superclass: Object

Package:

Traits:
Slots:
Class vars:
Pools:

s

Save

PostOffice Tag:

+
+
+

+

Q

Use the Coder to create a new class, specifying its name
(PostOfficeTestExamples), superclass (Object), and

package (PostOffice). You can also specify a tag (sub-
package), instance variables (slots), and other properties.

Click the checkmark (V) to commit.

Note that you can also create class programmatically by sending a
message to 1ts superclass (“everything happens by sending
messages’’):

Object subclass: #PostOfficeTestExamples

instanceVariableNames:

classVariableNames:

package: 'PostOffice’

Creating test examples

In Gt, tests are written
as example methods
that return an example
object.

This allows tests to be
composed, and also
allows the results to be
iInspected and explored.
Just add the annotation
<gtExample> 10 turn a
method into a (test)
example.

® @ Glamorous Toolkit

gt mPostOfficeTestExamples O x

+
PostOfficeTestExamples -

Superclass: Object

Package: PostOffice Tag:

Methods Comment References

Category ~ All +

PostOffice > PostOfficeTestExamples

emptyPostOffice
<gtExample>
| po |
po := PostOffice ® new.
self assert:» po isEmpty.

/\po

v - m i

Quick fixes

Like most modern
IDEs, Gt provides quick
fixes.

They appear as a
“wrench” icon, not only
within the Coder, but
anywhere you might
type a code snippet
(such as the
Playground).

L] @& Glamorous Toolkit

gt mPostOfficeTestExamples 0O x

+
PostOfficeTestExamples - o

Superclass: Object

Package: PostOffice Tag:

Methods Comment References
Category ~ All +

PostOffice > PostOfficeTestExamples

emptyPostOffice
<gtExample>

| po |
po := PostOfffice ® new.
self assert:P p create class PostOffice
A
po

7 - o i [Addclassvariable PostOffice to class PostOfficeTestExamples
Use PostOfficeTestExamples instead of PostOffice

Use PostorderGuide instead of PostOffice

Use PP2Choice instead of PostOffice

Use PostorderGuideTest instead of PostOffice

Use TKTService instead of PostOffice

Use PP2Sequence instead of PostOffice

Use PRReference instead of PostOffice

Initialization

The initialize method
IS run by default in Pharo
Smalltalk for all newly
created objects.

Here we Initialize a queue
slot (instance variable) for
new PostOffice
Instances.

@® & Glamorous Toolkit

gt mMPostOffice O % Q =
+

PostOffice - m Q B +

Superclass: Object

Package: PostOffice Tag:

Traits: e
(Slots: queue +)
Classvars: +
_— Add a method
ools: E
Class Slots: +
v
Methods Comment References Y s

Cat ~ All +
ategory Class references

initialize
queue := OrderedCollection new»
v - ng i initialization
isEmpty

A queue 1sEmpty

Unless your class 1s a direct subclass of Object, it 1s best

practice to perform super initialize as the first statement
in your 1itialize method (just as 1n all OO languages).

We 1itialize queue to OrderedCollection, as it provides

everything we need to model a queue, and there 1s no dedicated
Queue class.

e

Printing objects

@ Glamorous Toolkit

gt mPostOfficeTestExamples O x

PostOfficeTestExamples m Q B +

Superclass: Object

Package: PostOffice Tag:

Methods Examples map Comment Y +

Category ~ All +

PostOffice > PostOfficeTestExamples
postOfficeWithJlack
<gtExample>
| po |
po := self emptyPostOffice» .
(Customer named: » '3Jack') enters:| po.
self assert: po waiting equals:» 1.
A po

L4 = R i B > »i instance

eg accessing

accessing instance

emptyPostOffice

-

a PostOffice('Jack')

Raw

Print Connections

a PostOffice('Jack')

-

gt » Playground O x

Page

#PostOffice gtPackageMatches >| &
#printOn: gtImplementors

eg > »i 4

»

Meta

+

B

Glamorous Toolkit

Q
+
Q a GtSearchintersectionFilter (#PostOffice pac 1 (m] o
. Live Raw Print Connections Meta
Category ~ All +
PostOffice > Customer
printOn: aStream
self name» printOn: aStream
v - T i] accessing
PostOffice > PostOffice
printOn: aStream
super printOn: » aStream.
queue printElementsOn: aStream
accessing

) (=) (@) ()@

We can compose test examples, and implement
#printOn: to make objects printable

The postOfficeWithJack test example 1s composed from
the emptyPostOffice example.

The default print method of classes just show the class name, so

we override it in both PostOffice and Customer to show the
list of names of customers 1n the queue.

Note the use of a Gt query to find all the printOn: method
implementations 1n our package.

Running all the tests

® 0 Glamorous Toolkit
gt mPostOffice O x mAPostOfficeTestExamples Q =
Package Hierarchy Class Hierarchy PostOffice - m Q Ba +
Packages Classes InzRiaro
» Pillar-Tests-ExporterPillar ~ Customer Classes Tags Examples References Dependency Analysis 4 <
» Pillar-Tests-ExporterText PostOffice
» Pillar-Tests-Model PostOfficeTestExamples 5 examples 5 executed 5 successes 0 failures 0 errors 0 skipped
Pillar-Tests-PetitPillar Stat Class Selector Result
» Polymorph-Widgets -
Polymorph-Widgets-Rules & PostOfficeTestExamples emptyPostOffice PostOffice
PostOffice o PostOfficeTestExamples postOfficeWithJack PostOffice
> P Collect: . : : ; :
e e o PostOfficeTestExamples postOfficeWithJackAndJill PostOffice
ProfStef-Core)
ProfStef-Help o PostOfficeTestExamples postOfficeWithJackAndJillS¢ PostOffice
ProfStef-Tests @ PostOfficeTestExamples postOfficeWithJackServed PostOffice

Random-Core
Random-Tests
RecentSubmissions
Refactoring-Changes
Refactoring-Core
Refactoring-Critics

Yy Y Y VY Y Y Y YVYY

Refactoring-Environment:

The package view provides a way to run all the tests

You can also run a query to extract all the test examples from a
package:

(#PostOffice gtPackageMatches
& #gtExample gtPragmas) gtExamples

(Everything happens by sending messages.)

Enabling a “live” view

® 0 Glamorous Toolkit
gt mPostOffice i aPostOffice('Jack' 'Jill') O x Q =
T + + X
PostOfficeTestExamples m Q fa + a PostOffice('Jack' 'Jill') i O m a CollectionValueHolder[an Orde i O m
Superclass: Object Raw Print Connections Meta < Boxes Raw Print Connections AN <
Package: PostOffice Tag: Icon Variable Value 1
" c self a PostOffice('Jack' ' Jil
Methods Examples map Comment Y + >
c queue a CollectionValueHo
Category ~ All +
PostOffice > PostOfficeTestExamples
postOfficeWithJackAndJille
<gtExample>
| po |
po := self postOfficeWithJack» .
(Customer named:» '3Jill') enters: po. *
self assert: po waiting equals:» 2. self serveCustomed»
A
i eg > »i 5 »
v - N i B > »i | e accessing instance +

By wrapping the queue as a “value holder” obeying
MVC, we obtain a live view of the PostOffice for free

If we change the 1nitailization method of the PostOffice as
follows:

initialize

queue := OrderedCollection new asValueHolder

the queue will be wrapped as a “value holder” that produces

ValueChanged events when the collection 1s updated. The
Boxes view then updates itself automatically.

What we didn’t see

> Smalltalk is fully reflective
— Classes are objects too; the entire system is implemented in itself

> The debugger is your friend
— Sophisticated live debugging
— You can change the system while debugging

> You can’t lose code
— All changes are stored and can be replayed

> “Moldable” views in Gt
— You can create dedicated live visualizations for objects

24

What you should know!

> What are the key differences between Smalltalk, C++
and Java?

~ What is at the root of the Smalltalk class hierarchy?
~ What kinds of messages can one send to objects?
~ What is a cascade?

~ Why does 1+2/3 1 in Smalltalk?

~ How are control structures realized?

> How is a new class created?

~ What are categories for?

~> What are Factory methods? When are they useful?

Can you answer these questions?

~ Which is faster, a program written in Smalltalk, C++ or
Java?

~ Which is faster to develop & debug, a program written in
Smalltalk, C++ or Java?

~ How are Booleans implemented?

S s a comment an Object? How would you check this?
>~ What is the equivalent of a static method in Smalltalk?
S~ How do you make methods private in Smalltalk?

> What is the difference between = and ==

~ [f classes are objects too, what classes are they
Instances of?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that

@ suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

