
Oscar Nierstrasz

12. A bit of C++

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

2

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

3

4

Selected C++ Texts

> Bjarne Stroustrup, The C++ Programming Language, 4th edition,
Addison Wesley, 2013.

> Stanley B. Lippman and Josee LaJoie, C++ Primer, 5th edition,
Addison-Wesley, 2012.

> Scott Meyers, Effective Modern C++, 2d ed., Addison-Wesley, 2014.
> Andrew Koenig and Barbara E. Moo, Accelerated C++, 2001
> David R. Musser, Gilmer J. Derge and Atul Saini, STL Tutorial and

Reference Guide, 2d ed., Addison-Wesley, 2000.
> James O. Coplien, Advanced C++: Programming Styles and Idioms,

Addison-Wesley, 1992.

The book by Stroustrup is the reference manual but is not very
suitable for learning the langauge. Lippman and LaJoie offers a
good introduction and Meyers presents “best practices”.
In this lecture we will present the “orthodox canonical form”
from Coplien's book.

5

Object-oriented language genealogy

1960

1970

1980

1990

2000

FORTRAN

1950

ALGOL 60 COBOL LISP

Simula 67

Smalltalk 72

Smalltalk 80

Squeak

ALGOL 68

PrologPascal

Clu

Eiffel Oberon

Ada 95

2010

Perl

awk

php

Groovy

Python

Ada

Modula-2

C#

JavaScript
Java

PL/1

C

C++

Objective C Self

Ruby

Pharo

The original object-oriented language was Simula, designed by
Ole-Johan Dahl and Kristen Nygaard in Oslo. They wanted a
language to write simulation programs, so they added the notions
of objects, classes and inheritance to Algol 60. As these things go,
Simula programmers discovered that these mechanisms were
useful for more than just simulation programs, and the notion of
object-oriented programming as a general paradigm was born.
Years later, Bjarne Stroustrup needed to write simulations at Bell
Labs. Since he didn't have a Simula compiler, he decided to
follow the path of Dahl and Nygaard, and he added objects,
classes and inheritance to C. The rest is history.

6

What is C?

> C is a general-purpose, procedural, imperative language
developed in 1972 by Dennis Ritchie at Bell Labs for the
Unix Operating System.
—Low-level access to memory
—Language constructs close to machine instructions
—Used as a “machine-independent assembler”

C is an imperative language with constructs that can easily be
mapped to assembler code. The language is a simplified
descendant of BCPL, another language from the 60s.
C was designed as a systems programming language, particularly
for implementing the Unix operating system, itself a
simplification of the Multics O/S.

7

My first C Program

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
 return 0;
} char array

Indicate correct termination

Write to
standard
output

A preprocessor directive

Include standard io
declarations

The C preprocessor (cpp) expands macros and included header
files. Header files typically declarations of functions in object
libraries that allow them to be type-checked and safely used. Here
we need the declaration of the standard printf function from the
stdio.h (standard I/O) header file.
C programs always start from a main function that may take
arguments (here not) and returns an integer representing the
program status (0 for success). The program prints "hello,
world\n", an array of characters terminated by an ascii 0 (for a
total of 14 characters).

8

What is C++?

A “better C” (http://www.research.att.com/~bs/C++.html)
that supports:
> Systems programming
> Object-oriented programming (classes & inheritance)
> Programming-in-the-large (namespaces, exceptions)
> Generic programming (templates)
> Reuse (large class & template libraries)

http://www.research.att.com/~bs/C++.html
http://www.research.att.com/~bs/C++.html

C++ is a general-purpose, high-level programming language with
low level facilities. In the late 80s C++ became a very popular
commercial language. It supports many programming styles
— procedural, data abstraction, OO and template programming.
A namespace is a context in which a group of one or more
identifiers might exist.
namespace foo {

int bar;

}

using namespace foo;
Namespace resolution is hierarchical.
In Java the idea of a namespace is embodied by Java packages.
e.g., java.lang.String. NB: Namespaces are not hierarchical in
Java.

9

C++ vs C

Most C programs are also C++ programs.

Nevertheless, good C++ programs usually do not resemble C:
> avoid macros (use inline)
> avoid pointers (use references)
> avoid malloc and free (use new and delete)
> avoid arrays and char* (use vectors and strings) ...
> avoid structs (use classes)

C++ encourages a different style of programming:
> avoid procedural programming

—model your domain with classes and templates

Macros in C are handled by the C preprocessor. In C++ you
should use constant declarations and inline functions instead.
The use of pointers in C is a source of many bugs. In C++ there is
a safer mechanism called a "reference" (actually an alias), which
we will see in this lecture.
Memory blocks are allocated and released in C using the malloc
and free functions. Instead in C++ you allocate objects, using new
and delete.
Low-level arrays and character pointers from C are replaced by
dedicated classes in C.
Primitive data structures (structs) are replaced by classes in C++.

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

10

11

Hello World in Java

package p2;
// My first Java program!
public class HelloMain {
 public static void main(String[] args) {

System.out.println("hello world!");
return 0;

}
}

The Java version of the “hello world” program looks a bit like the
C version, except that the main program is a static method of a
class, and the print function is a method of the object
System.out.

12

“Hello World” in C++

#include <iostream>
using namespace std;
// My first C++ program!
int main(void)
{
cout << "hello world!" << endl;
return 0;

}

Use the standard namespaceInclude standard
iostream classes

A C++ comment

cout is an
instance of
ostream

operator overloading
(two different argument types!)

As in the C version, we have to include the appropriate header
file declaring the libraries we plan to use, in this case, the
iostream library. (Note that we do not need to specify the “.h”
suffix.) We also specify that we will use (import) the standard
namespace (alternative, we can refer to cout and endl as
std::cout and std::endl).
We know C++ style comments from Java.
The object cout is declared in the standard namespace (similar
to Java’s System.out), as is endl.
In C++ we can overload operators (in Java you can only overload
methods). Here we use << which is define to work with ostream
objects and strings.
Note that there are two different << operators used here: one takes
an ostream and string as arguments, and the other takes an
ostream and an endl object as its arguments.

13

Makefiles / Managed Make in CDT or CLion

c++ helloWorld.cpp -o helloWorldYou could compile it
all together by hand:

helloWorld : helloWorld.cpp
c++ $@.cpp -o $@

make helloWorld

Or you could use a Makefile to
manage dependencies:

Or you could use cdt with
eclipse or CLion to create
a standard managed
make project

The C++ compiler can be known under various names.
A makefile specifies a number of rules for creating generated files
that depend on other files. In a complex system, there may be
many dependencies. When you change one file, you want to
avoid having to recompile everything. The make system uses the
makefile dependencies to compute the minimum number of files
that have to be regenerated.
Here we specify that the helloWorld executable depends on the
helloWorld.cpp source files. The rule to generate it is
c++ $@.cpp -o $@

where $@ stands for the name of the file to be created, in other
words:
c++ helloWorld.cpp -o helloWorld

To generate the program we just execute: make helloWorld

14

C++ Design Goals

“C with Classes” designed by Bjarne Stroustrup in early
1980s:

> Originally a translator to C
—Initially difficult to debug and inefficient

> Mostly upward compatible extension of C
—“As close to C as possible, but no closer”
—Stronger type-checking
—Support for object-oriented programming

> Run-time efficiency
—Language primitives close to machine instructions
—Minimal cost for new features

In the 1980s, computers were much slower, and it was critical that
both compilation time and the execution time of the compiled
programs be as efficient as possible. Since object-oriented
programming introduced addition levels of indirection over
procedural programming (i.e., to look up methods in classes), the
original design of C++ carefully limited the points in the code
where additional costs might be incurred. Programmers therefore
have full control over the costs they are willing to pay for
language features.

15

C++ Evolution

C with Classes Classes as structs; inheritance; virtual functions; inline
functions

C++ 1.0 (1985) Improved type system; new and delete operators;
function prototypes

C++ 2.0 (1989) Multiple inheritance; local classes; protected members

C++ 3.0 (1993) Templates; exception handling

C++98 (1998) Namespaces; RTTI (Runtime Type Information)

C++11 (2011) Standard library and core language enhancements; lambdas

C++14 (2014) Small extensions

C++17 (2017) Numerous new and removed language tweaks

The original version of C++, known as “C with Classes”, was just a
translator that generated C code. It supported classes, inheritance,
inline functions and “virtual functions” (i.e. methods that would be
looked up dynamically based on the receiver).
One of the most important contributions of C++ was the improvement
to the type system. This later influenced the design of the C language.
Multiple inheritance is a controversial feature supported only by some
OO languages (but noot by Java or Smalltalk).
Templates were an important addition to C++, supporting
parameterized code. In Java this is supported (partially) by generics.
Namespaces were added relatively late in the process, to support
large-scale programming in which name clashes between
independently developed subsystems must be avoided.
RTTI allows programs to obtain information at run-time about the
types of objects in a running system.

16

Java and C++ — Similarities and Extensions

Similarities:

> primitive data types (in Java,
platform independent)

> syntax: control structures,
exceptions ...

> classes, visibility declarations
(public, private)

> multiple constructors, this, new
> types, type casting (safe in Java,

not in C++)
> comments

Key Java Extensions:

> garbage collection
> standard abstract machine
> generics instead of templates
> standard classes (came later to

C++)
> packages (now C++ has

namespaces)
> final classes
> autoboxing

Java’s syntax was designed to resemble that of C++, to make it
easy for C++ programmers to learn the language. In fact, the
resemblance between the languages is mostly superficial. C++
remains a systems programming language (like C) for
implementing platforms, and Java is an applications
programming language with high portability across platforms.

17

Java Simplifications of C++

> no multiple inheritance — implement multiple interfaces
> no pointers — just references
> no destructors — garbage collection and finalize
> no functions — can declare static methods
> no global variables — use public static variables
> no linking — dynamic class loading
> no header files — can define interface
> no operator overloading — only method overloading
> no member initialization lists — call super constructor
> no preprocessor — static final constants and automatic

inlining
> no structs, unions — typically not needed

18

New Keywords

In addition to the keywords inherited from C, C++ adds:
Exceptions catch, throw, try

Declarations:

bool, class, enum, explicit, export,
friend, inline, mutable, namespace,
operator, private, protected, public,
template, typename, using, virtual,
volatile, wchar_t

Expressions:

and, and_eq, bitand, bitor, compl,
const_cast, delete, dynamic_cast,
false, new, not, not_eq, or, or_eq,
reinterpret_cast, static_cast, this,
true, typeid, xor, xor_eq

(see http://www.glenmccl.com/glos.htm)

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

19

20

Memory Layout

The address space consists of (at least):
Text: executable program text (not writable)

Static: static data
Heap: dynamically allocated global memory (grows upward)
Stack: local memory for function calls (grows downward)

Text
(program) Static Heap Stack

In a classical 32-bit architecture, a 32-bit C or C++ pointer can
address up to 4GB of memory. Modern architectures support 64
bit pointers, which overcome the 4GB limitation.
The actual memory used by a program is far less than that which
could theoretically be addressed. Normally statically and
dynamically allocated heap space start with low addresses (i.e.,
starting from 0) and increase on need. The run-time stack starts at
high addresses (264 - 1) and decreases.
Low address starts with program “text” (i.e., space for the
program itself), then static memory for global data following the
program text. Finally as the program runs, heap space is allocated
dynamically through calls to new (or malloc).

21

Pointers in C and C++

int i;
int *iPtr; // a pointer to an integer

iPtr = &i; // iPtr contains the address of I
*iPtr = 100;

456FD4
456FD0

i
iPtr

variable value Address in hex

...
100
456FD4
...

A pointer holds the address of an object in memory.
Here iPtr is a variable holding the address of an integer object
in memory. The size of a pointer is always the same, depending
on the machine architecture (on modern computers normally 64
bits). It does not depend on the object pointed to.
In C and C++, you use the & operator to take the address of an
object. The address can be assigned to a pointer variable.
To dereference a pointer, you use the * operator.
Note that * is used here both in the definition of iPtr (its type is
int *), and to dereference the pointer (*iPtr).
Note also that *iPtr is used here as an lvalue, i.e., a value that
can be assigned to on the left-hand side of an assignment, as
opposed to an rvalue, which is a value used in an expression or an
assignment.

22

References

A reference is an alias for another variable:

Once initialized, references cannot be changed.

References are especially useful in procedure calls to avoid the
overhead of passing arguments by value, without the clutter of explicit
pointer dereferencing (y = *ptr;)

int i = 10;
int &ir = i; // reference (alias)
ir = ir + 1; // increment i

void refInc(int &n)
{

n = n+1; // increment the variable n refers to
}

i,ir

...

10

...

The there reference in most languages (e.g., Java) means
something similar to a pointer. It is normally implemented as a
kind of safe pointer to an object.
In C++, a reference is not a pointer, but an alias. This means that
it occupies no memory of its own, but simply provides a new
name for an already existing object. You can use the reference
just as you would the original name, so no pointer dereferencing
is needed to read or write the referred object.
The syntax for declaring a reference is unfortunately that same as
the syntax for taking the address of an object in memory.
However the reference syntax is only used in definitions, whereas
an address may only be taken as part of an expression.
In the previous slide, & is only used to define ir and n, not to
take the address of an object.

23

References vs Pointers

References should be preferred to pointers except when:
> manipulating dynamically allocated objects

—new returns an object pointer
> a variable must range over a set of objects

—use a pointer to walk through the set

References are inherently safer than pointers, since they involve
no pointer arithmetic. However there are two situations where
pointers are needed.
The first occurs when a new objects is created (with new). This
always returns a pointer. To avoid dealing with pointers, the
pointer can be immediately dereferenced and assigned to a
reference variable:
Cat &myCat = *(new Cat());

To delete it, however, we must get the pointer back:
delete &myCat;

Note the two different uses of & above (the first to declare a
reference and the second to take the address of the reference).
The second situation arises when you need to iterate over a
collection. In this case, however, C++ provides iterators that
eliminate the need too work with low-level pointers.

24

C++ Classes

C++ classes may be instantiated either automatically (on the stack):

or dynamically (in the heap)

MyClass oVal; // constructor called
// destroyed when scope ends

MyClass *oPtr; // uninitialized pointer

oPtr = new MyClass; // constructor called
// must be explicitly deleted

Whereas in Java all objects exists exclusively in the heap, in C++
(as in C), objects may also be allocated automatically in the run-
time stack.
As in Java, objects in the heap are created using the new
keyword. Such objects must be explicitly deleted (i.e., using
delete).
Objects in the stack are allocated automatically (hence the term
automatic memory), when the functions they are defined in are
executed.
The way a variable is declared and initialized tells us where it is:
Thing y; // automatic, on the stack

Thing *yp = &y; // a pointer to y on the stack

Thing &yr = y; // a reference to y on the stack

Thing *xp = new Thing; // a pointer to the heap

Thing &xr = *xp; // a reference to the heap

25

Constructors and destructors

#include <iostream>
#include <string>
using namespace std;

class MyClass {
private:

string name;
public:

MyClass(string name) : name(name) { // constructor
cout << "create " << name << endl;

}
~MyClass() {

cout << "destroy " << name << endl;
}

};

Include standard iostream
and string classes

Use initialization
list in constructor

Specify cleanup
in destructor

Constructors in C++ may include an initialization list that
initializes instance variables using their own constructors, and
taking as arguments those specified in the initialization list. The
initialization name(name) is analogous to:
this.name = new string(name);

C++ class also support explicit destructors, which provide the
details of how the memory used by the object is to be released. As
a general rule, every piece of memory allocated with new must
be released some where with a corresponding delete.
(The example on the previous slide is degenerate, since nothing is
allocated or released; it simply reports when the constructor and
destructor are called, needed for the following example.)

26

Automatic and dynamic destruction

MyClass& start() { // returns a reference
MyClass a("a"); // automatic

 MyClass *b = new MyClass("b"); // dynamic
return *b; // returns a reference (!) to b

} // a goes out of scope
void finish(MyClass& b) {

delete &b; // need pointer to b
}

#include "MyClass.h”
using namespace std;
int main (int argc, char **argv) {

MyClass aClass("d");
 finish(start());

return 0;
}

create d
create a
create b
destroy a
destroy b
destroy d

Here we see when exactly constructors and destructors are called
for objects on the stack and the heap.
Objects a and d are automatic, and are created and destroyed
when their scopes, i.e., main and start, begin and end.
Object b is dynamic. It is explicitly created in the start()
function, and then explicitly deleted in the finish() function.

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

27

28

Orthodox Canonical Form

Most of your classes should look like this:

class myClass {
public:

myClass(void); // default constructor
myClass(const myClass& copy); // copy constructor

... // other constructors
~myClass(void); // destructor
myClass& operator=(const myClass&); // assignment

... // other public member
functions
private:

...
};

In order to ensure that your objects are cleanly created and
destroyed, that is, to make sure you have no memory leaks, and
no dangling pointers, you should design your classes as promoted
by Coplien.
This means you need to implement not only the default
constructor and the destructor, but also a copy constructor and an
assignment operator.

29

Why OCF?

If you don’t define these four member functions, C++ will generate
them:

> default constructor
—will call default constructor for each data member

> destructor
—will call destructor of each data member

> copy constructor
—will shallow copy each data member
—pointers will be copied, not the objects pointed to!

> assignment
—will shallow copy each data member

The default constructor (as in Java) takes no arguments.
The destructor should release (delete) all memory that has
been indirectly allocated by the object (i.e., pointed to by its
instance variables).
The copy constructor takes a reference to an object of the same
type, and returns a pointer to a new object that is a copy of the
original.
The assignment operator specifies how the representation of the
argument (rhs, or right-hand side) is to be copied to the receiver
(lhs, or left-hand side).
If you do not specify these four methods, C++ will generate them,
assuming a shallow-copy strategy. This is very often the wrong
thing to do, so it is better to specify them yourself.

30

Example: A String Class

We would like a String class that protects C-style strings:
> strings are indistinguishable from char pointers
> string updates may cause memory to be corrupted

Strings should support:
> creation and destruction
> initialization from char arrays
> copying
> safe indexing
> safe concatenation and updating
> output
> length, and other common operations ...

C++ actually has such a class (called string), which hides all
the details of the underlying character array representation. The
example illustrates all the main points of the orthodox canonical
form.

31

A Simple String.h

class String
{

friend ostream& operator<<(ostream&, const String&);
public:

String(void); // default constructor
~String(void); // destructor
String(const String& copy); // copy constructor
String(const char*s); // char* constructor
String& operator=(const String&); // assignment

inline int length(void) const { return ::strlen(_s); }
char& operator[](const int n) throw(exception);
String& operator+=(const String&) throw(exception); // concatenation

private:
char *_s; // invariant: _s points to a null-terminated heap string
void become(const char*) throw(exception); // internal copy function

};

A friend function
prototype declaration
of the String class

Operator
overloading

Returns a
reference to
ostream

Operator
overloading
of =inline

C and C++ distinguish declarations from definitions. A declaration specifies, or
“declares” variables and functions needed to be able to use a component (i.e., a
class or a package). Declarations simply state that something exists, but does not
allocate any memory for it. Declarations go into header (or “.h”) files, that can be
shared by service providers and their clients.
Definitions, on the other hand, specify the implementations of variables and
functions, so they allocate memory for them. Definitions go into source files,
which may end in “.C”, “.cpp” or even “.c++”.
This “String.h” file declares (but does not define) the class String.
The “friend” function we will see later. It allows us to send String instances to
an output stream.
In addition to the standard constructors and the destructor, we also declare a
char* constructor to build a String object from a plain old C character array.
We further declare a length method, an indexing operator [] and a
concatenation operator +=.
Interestingly, we also declare the private representation. This is needed to compute
the size of memory that clients need to reserve for String instances. In this case,
it is no more nor less than a single character pointer into the heap.

32

Default Constructors

Every constructor should establish the class invariant:

The default constructor for a class is called when a new instance is
declared without any initialization parameters:

String::String(void)
{

_s = new char[1]; // allocate a char array
_s[0] = '\0'; // NULL terminate it!

}

String anEmptyString; // call String::String()
String stringVector[10]; // call it ten times!

Allocate memory
for the string

While the declarations of the String methods belongs to the
String.h file, their definitions (implementations) belong in the
String.cpp file. After the header file is included, each method is
implemented using its full name, i.e., String::method

The class invariant for our String class is that the _s variable
should point to a valid character array (i.e., a C string) in the
heap. This array must not be shared with any other object!
We initialize a new String to point to an empty string. In C,
this is a character array of length 1, terminated by an ASCII
NULL (0).

33

Destructors

The String destructor must explicitly free any memory
allocated by that object.

Every new must be matched somewhere by a delete!
> use new and delete for objects
> use new[] and delete[] for arrays!

String::~String (void)
{

delete [] _s;
}

free memory

Since the constructor creates a char array in the heap, it must be
destroyed by the constructor. (Every object created by new must
be destroyed somewhere by a delete.)
Caveat: arrays are created not by new but by new[]. They must
accordingly be destroyed not by delete but by delete [].

34

Copy Constructors

Our String copy constructor must create a deep copy:

String::String(const String& copy)
{

become(copy._s); // call helper
}

void String::become(const char* s) throw (exception)
{

_s = new char[::strlen(s) + 1];
if (_s == 0) throw(logic_error("new failed"));
::strcpy(_s, s);

}

From std

The copy constructor takes a reference to an existing String object, and
builds a copy of it. Note that the argument must be a reference. Since C
and C++ are call-by-value languages, if the argument were specified
simply as a String, then its value would have be to copied. But the
method for copying String values is precisely what we are defining, so
that could never work.
In addition, the argument is declared as a “const”. This declaration is a
promise that we will not attempt to modify the argument in the body of the
method. This allows us to create copies of strings declared to be constant.
In general C++ requires that copy constructors not modify their arguments.
The implementation calculates the length of the string to be copied, creates
a new character array of that length (+1 for the null terminator), and then
copies the argument array to the new array.
The become() helper function will also be useful later for implementing
the assignment operator.
Note that we must check that the result of new is not a null pointer
(signaling an out-of-memory error).

35

A few remarks ...

> We must define a copy constructor,  
… else copies of Strings will share the same representation!
—Modifying one will modify the other!
—Destroying one will invalidate the other!

> We must declare copy as const,  
… else we won’t be able to construct a copy of a const String!
—Only const (immutable) operations are permitted on const values

> We must declare copy as String&, not String, 
… else a new copy will be made before it is passed to the constructor!
—Functions arguments are always passed by value in C++
—The “value” of a pointer is a pointer!

> The encapsulation boundary is a class, not an object. Within a
class, all private members are visible (as is copy._s)

Note that in C++, as in Java, the encapsulation boundary is a
class, not an object. Any instance of a given class A can access all
the “private” state of other instances of the same class, so we can
access copy._s, even though it is “private” to copy.
(In Smalltalk, the encapsulation boundary is the object.)

36

Other Constructors

Class constructors may have arbitrary arguments, as long
as their signatures are unique and unambiguous:

Since the argument is not modified, we can declare it as
const. This will allow us to construct String instances
from constant char arrays.

String::String(const char* s)
{

become(s);
}

37

Assignment Operators

> Return String& rather than void so the result can be used in an
expression

> Return String& rather than String so the result won’t be copied!
> this is a pseudo-variable whose value is a pointer to the current

object
—so *this is the value of the current object, which is returned by reference

String& String::operator=(const String& copy)
{

if (this != ©) { // take care!
delete [] _s;
become(copy._s);

}
return *this; // NB: a reference, not a copy

}

Assignment is different from the copy constructor because an instance
already exists:

Although this method is only a few lines long, there are a number of
subtle things going on. As before, the argument must be a reference,
to avoid copying it by value. Similarly, we return a reference, to avoid
copying it, and to avoid returning a pointer.
All assignment operators should perform a sanity check to make sure
that the rhs (right-hand side of the assignment) is not an alias for the
lhs, or havoc may ensue! (In this case we would delete the memory of
the object and then try to copy it!) Since this in C++ is always a
pointer, we must take the address of the argument to perform the
comparison.
Before performing the become(), we must release the old value of
the lhs. Since it was allocated with new[] it must be freed with
delete[].
Finally, to return a reference to the updated object we return *this
(a reference), not this (a pointer).

38

Implicit Conversion

When an argument of the “wrong” type is passed to a
function, the C++ compiler looks for a constructor that will
convert it to the “right” type:

is implicitly converted to:

str = "hello world";

str = String("hello world");

NB: compare to autoboxing in Java

39

Operator Overloading (indexing)

Not only assignment, but other useful operators can be “overloaded”
provided their signatures are unique:

NB: a non-const reference is returned, so can be used as an lvalue in
an assignment.

char& String::operator[] (const int n) throw(exception)
{

if ((n<0) || (length()<=n)) {
throw(logic_error("array index out of bounds"));

}
return _s[n];

}

Java allows you to overload methods, but not operators. The
principle is the same, however. In both cases there is one
syntactic operator or method, but many different
implementations, each accepting different static types.
Overloaded operators are resolved at compile-time, based on the
static types of the arguments. Consider:
"hello" + "there"

1 + 2

In each case, the compiler can statically determine which +
operator is to be executed.
NB: Overloading is different from overriding, where methods
inherited from a superclass may be overridden by a subclass. In
that case, which method is to be executed can only be determined
at run time, depending on the dynamic type of the first argument.

40

Overloadable Operators

The following operators may be overloaded:

+ - * / % ^ & |

- ! , = < > <= >=

++ -- << >> == != && ||

+= -= /= %= ^= &= |= *=

<<= >>= [] () -> ->* new delete

NB: arity and precedence are fixed by C++

41

Friends

We would like to be able to write:

But:
—It can’t be a member function of ostream, since we can’t

extend the standard library.
—It can’t be a member function of String since the target is cout.
—But it must have access to String’s private data

So ... we need a binary function << that takes a cout and a
String as arguments, and is a friend of String.

cout << String("TESTING ... ") << endl;

“Friends” are peculiar to C++, but are reminiscent of Java's
“package scope”. The idea is that classes that are designed to
work closely together may need access to each other’s private
state. In Java you would put these together in the same package
and declare the state to be of package scope (i.e., without any
“private” or “protected” modifier). In C++ you can
declare the privileged functions as “friends”.

42

Friends ...

class String
{
 friend ostream&

operator<<(ostream&, const String&);
...

};

ostream&
operator<<(ostream& outStream, const String& s)
{

return outStream << s._s;
}

We declare:

And define:

> C++ vs C
> C++ vs Java
> References vs pointers
> C++ classes: Orthodox Canonical Form
> A quick look at STL — The Standard Template Library

Roadmap

43

44

Standard Template Library

STL is a general-purpose C++ library of generic algorithms and data
structures.

1. Containers store collections of objects
— vector, list, deque, set, multiset, map, multimap

2. Iterators traverse containers
— random access, bidirectional, forward/backward ...

3. Function Objects encapsulate functions as objects
— arithmetic, comparison, logical, and user-defined ...

4. Algorithms implement generic procedures
— search, count, copy, random_shuffle, sort, ...

5. Adaptors provide an alternative interface to a component
— stack, queue, reverse_iterator, ...

45

An STL Line Reverser

#include <iostream>
#include <stack> // STL stacks
#include <string> // Standard strings

void rev(void)
{

typedef stack<string> IOStack;// instantiate the template
IOStack ioStack; // instantiate the template class
string buf;

while (getline(cin, buf)) {
ioStack.push(buf);

}
while (ioStack.size() != 0) {

cout << ioStack.top() << endl;
ioStack.pop();

}
}

Note how the high-level abstractions of strings and stacks
completely hide the low-level details of memory management.
The equivalent program in C is far more complex, difficult to
read and to debug.
Modern C++ pushes this idea even further and approaches a level
of abstraction close to that of Java.

46

What we didn’t have time for ...

> virtual member functions, pure virtuals
> public, private and multiple inheritance
> default arguments, default initializers
> method overloading
> const declarations
> enumerations
> smart pointers
> static and dynamic casts
> Templates, STL
> template specialization
> namespaces
> RTTI
> ...

47

What you should know!

✎ What new features does C++ add to C?
✎ What does Java remove from C++?
✎ How should you use C and C++ commenting styles?
✎ How does a reference differ from a pointer?
✎ When should you use pointers in C++?
✎ Where do C++ objects live in memory?
✎ What is a member initialization list?
✎ Why does C++ need destructors?
✎ What is OCF and why is it important?
✎ What’s the difference between delete and delete[]?
✎ What is operator overloading?

48

Can you answer these questions?

✎ Why doesn’t C++ support garbage collection?
✎ Why doesn’t Java support multiple inheritance?
✎ What trouble can you get into with references?
✎ Why doesn’t C++ just make deep copies by default?
✎ How can you declare a class without a default

constructor?
✎ Why can objects of the same class access each others

private members?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

