P2 - Exercise hour

Pooja Rani

2021-05-21

Account Database

Parser
- Read input, parse accounts

Create Accounts
- A account class to store all the attributes of the

account
- Use factory, prototype, or builder pattern to create
the account object

Patterns

Design patterns

- Chain of Responsibility
- Factory

- Visitor

- Singleton

- Builder

- Null Object

- Prototype

- Iterator

Chain of Responsibility

- Search by client type

- Search needs to be chained

- First search in business clients

// Chain objects
public class BussinessClient{
public boolean match(String query) {
if (super.match(query)) {
return true;
}

return this.SalariedClient.match(query) ;

1}

// Chain objects
public class SalariedClientq{
public boolean match(String query) {
if (super.match(query)) {
return true;
}

return this.studentClient.match(query) ;

3}

Factory pattern
- Use interface or inheritance to create an object

public interface Account{

3

public class CurrentAccount implements Account {
X

public class SavingAccount implements Account {

}

Factory pattern

public class FactoryDemo{
String name = getInputValue();
Account account = null;
if (name.equals("current"){
account = new CurrentAccount();
}
if (name.equals("saving"){
account = new SavingAccount();
}

assert account != null;

Factory pattern
- Open/Closed Principle.
- You can introduce new variants of accounts

without breaking existing client code.

Visitor pattern

- Use the pattern when a behavior makes sense only
in some classes of a class hierarchy, but not in
others.

- To visit different clients and accounts

- ClientVisitor
- AccountVisitor

Visitor pattern
To visit different types of clients such as Business,
Student, Salaried.

public interface ClientVisitor {
void visitBusinessClient(BusinessClient businessClient);

}
public class BusinessClient {
@0verride
public void accept(ClientVisitor clientVisitor) {
clientVisitor.visitBusinessClient (this);

}

Visitor pattern
We have different types of accounts such as current,
saving, premium.

public interface Account{
void accept(AccountVisitor accountVisitor);

}

public class CurrentAccount {
@0verride
public void accept(AccountVisitor accountVisitor) {
accountVisitor.visit (this);

}

public class SavingAccount {
}
}

Visitor pattern
To visit different types of accounts such as current,
premium.

public interface AccountVisitor {
void visit(CurrentAccount currentAccount);
void visit(PremiumAccount premiumAccount);

public interface CurrentAccountVisitor implements
AccountVisitor {
void visit(CurrentAccount currentAccount){ .. }
void visit(PremiumAccount premiumAccount) { .. }

Visitor pattern
Visit accounts

public class VisitorDemo{
Account[] accounts =
{new CurrentAccount(), new PremiumAccount()}
CurrentAccountVisitor ca = new CurrentAccountVisitor();
for (Account account: accounts)q{
account.accept(ca);

}

Singleton pattern
- ensure that a class has only one instance

public abstract class Account {
protected Account() {}

public static Account instance() {
if (instance == null) {
instance = defaultInstance();

}

return instance;

Builder pattern
- Use Builder pattern to create complex objects

public class PlaintextParser {

Account.AccountBuilder accountBuilder = new
Account.AccountBuilder(id, client);

b
public static class AccountBuilder {
public AccountBuilder (){

}
public Account build(){
return new Account(this);

}

Builder pattern
- Instantiate the account with the data provided by

AccountBuilder
- AccountBuilder is a helper class to create account

instance
- It can validate each account attribute separately

- Single Responsibility Principle.

Nullable fields
- A few fields are marked as optional
- You can use @Nullable annotation

public Account(String client, @ONullable Date date,
@Nullable Integer boxOffice)
{
//account does not exists
assert (AccountDB.find(client).isEmpty());

// set all the attributes of the account

Null Object Pattern

- Handle null cases for the objects

- Null object has no side effects as it does nothing

- Used as stub in testing, when certain features such

as database is not available for testing

public class NullRenderer implements Renderer {

@0verride
public void render(Account account) { /* do nothing */ }

Other patterns
- Prototype
- lterator pattern

Smalltalk

v

Smalltalk is a dynamic typed language

v

Style matches to the natural language, English

v

GToolkit provides a live programming environment

v

Supports live debugging

v

Inspect objects with custom representations

Basic blocks

2 raisedTo: 30 "1073741824- "
15 I 25 "(3/5)- Fraction"
'Hello Smalltalk]| "'Hello Smalltalk' -ByteString"

anArray := #(1 2)

How do you write Loops?
Java

for(int i = 1; i < 10 ; i++)
System.out.print(i);

GT

(1 to: 9) do: [:x | Transcript show: x printString]

Detect first odd number from the array?
Java

int[] array = {21, 23, 53, 66, 87};
Integer result = null;
for (int i = 0; i < array.length ; i++) {
if (arrayl[il \% 2 == 1) {
result = arrayl[i];
break;
+ 3
if (result == null)
throw new Exception("Not found");

GT

#(21 23 53 66 87) detect: [:x | x odd]

Note: Note that arrays are 1-based-
that is, the first valid index is 1, rather than 0.

Exercise 11

v

Turtle game similar to exercise 3

v

Move turtle using 4 commands

v

Commands are already created

Understand ‘TurtleModel* and ‘BoardModel* class and
document the classes

v

Document the classes

» Document all the details like purpose of the classes, what
they do, instance variables, APIs warnings, observations
etc. that you think is important to understand and
extend these classes

» Smalltalk use Class comments as a primary source to
document all such details

» Write all the details in comments

» Document ‘TurtleModel' and ‘BoardModel‘ class and
document the classes

NOTE

» Deadline 28th May, 2021

