Serie 6 - Fixed Points

Exercise 1

We represent non-negative integers with the following Lambda expressions:

$$0 \equiv \lambda f \cdot \lambda x \cdot x$$

$$1 \equiv \lambda f \cdot \lambda x \cdot f x$$

$$2 \equiv \lambda f \cdot \lambda x \cdot f(fx)$$

$$\vdots$$

$$n \equiv \lambda f \cdot \lambda x \cdot f^{n} x$$

Suppose you have defined the function **if** and the operations **add**, **pred** and **isZero**. Consider the following recursive (and hence not valid) definition for the multiplication:

times = $\lambda n_1 \cdot \lambda n_2$. if (isZero n_1) 0 (add n_2 (times (pred n_1) n_2))

If we abstract the name **times**, we get the new expression:

$$\mathbf{t}=\lambda f$$
 . λn_1 . λn_2 . if (isZero $n_1)$ 0 (add n_2 $(f$ (pred $n_1)$ $n_2))$

By the FP theorem we know that (Y t) is a non-recursive equivalent of the above times definition.

The exercise: write down the reduction sequence to demonstrate that

$$(((\mathbf{Y} \mathbf{t}) \mathbf{1}) \mathbf{k}) \rightarrow \mathbf{k}.$$

Exercise 2

We can represent lists and list operators with the following Lambda expressions:

```
\mathbf{nil} = \lambda f \cdot true\mathbf{null} = \lambda l \cdot l (\lambda h \cdot \lambda t \cdot false)\mathbf{cons} = \lambda h \cdot \lambda t \cdot \lambda f \cdot fht\mathbf{head} = \lambda l \cdot l (\lambda h \cdot \lambda t \cdot h)\mathbf{tail} = \lambda l \cdot l (\lambda h \cdot \lambda t \cdot t)
```

Example: the list [1, 2, 3] is represented by the λ -expression cons 1 (cons 2 (cons 3 nil)).

To do:

1. Translate the following definition into a non-recursive form:

append = $\lambda l_1 \cdot \lambda l_2 \cdot \text{if (null } l_1) l_2 \text{ (cons (head } l_1) \text{ (append (tail } l_1) l_2))}$

2. Test your result by appending list L_2 to list L_1 , which are defined below:

 $L_1 = \cos 1 \ (\cos 2 \ nil)$ and $L_2 = \cos 3 \ nil$