
Oscar Nierstrasz

Programming Languages
1. Introduction

Roadmap

> Course Schedule
> Programming Paradigms
> A Quick Tour of Programming Language History

Programming Languages

Lecturer: Oscar Nierstrasz
Assistants: Mohammadreza Hazhirpasand

Joel Niklaus
WWW: http://scg.unibe.ch/teaching/pl

3

NB: Please register on both Academia and Ilias for this course

Roadmap

> Course Schedule
> Programming Paradigms
> A Quick Tour of Programming Language History

Sources

> Text:
—Kenneth C. Louden, Programming Languages: Principles and

Practice, PWS Publishing (Boston), 1993.

> Other Sources:
—Paul Hudak, “Conception, Evolution, and Application of Functional

Programming Languages,” ACM Computing Surveys 21/3, 1989,
pp 359-411.

—Clocksin and Mellish, Programming in Prolog, Springer Verlag,
1987.

5

Schedule

6

1 26-Feb-21 Introduction
2 05-Mar-21 Stack-based Programming
3 12-Mar-21 Functional Programming
4 19-Mar-21 Types and Polymorphism
5 26-Mar-21 Lambda Calculus

- 02-Apr-21 Good Friday
- 09-Apr-21 Easter vacation

6 16-Apr-21 Fixed Points
7 23-Apr-21 Programming Language Semantics
8 30-Apr-21 Objects and Prototypes
9 07-May-21 Objects, Types and Classes

10 14-May-21 Logic Programming
11 21-May-21 Applications of Logic Programming
12 28-May-21 Visual Programming

- 04-Jun-21 Final Exam

This is a note (a hidden slide). You will find some of these
scattered around the PDF versions of the slides.

Roadmap

> Course Schedule
> Programming Paradigms
> A Quick Tour of Programming Language History

What is a Programming Language?

> A formal language for describing computation?
> A “user interface” to a computer?
> Syntax + semantics?
> Compiler, or interpreter, or translator?
> A tool to support a programming paradigm?

A programming language is a notational
system for describing computation in a
machine-readable and human-readable form.

— Louden

9

What is a Programming Language? (II)

A programming language is a tool for
developing executable models for a
class of problem domains.

The thesis of this course:

10

Themes Addressed in this Course

Paradigms
How do different language paradigms
support problem-solving?

Semantics
How can we understand the semantics
of programming languages?

Foundations
What are the foundations of
programming languages?

11

Generations of Programming Languages

1GL: machine codes
2GL: symbolic assemblers
3GL: (machine-independent) imperative languages
4GL: domain specific application generators
5GL: AI languages …

Each generation is at a higher level of abstraction

12

How do Programming Languages Differ?

> Common Constructs:
—basic data types (numbers, etc.); variables; expressions;

statements; keywords; control constructs; procedures; comments;
errors ...

> Uncommon Constructs:
—type declarations; special types (strings, arrays, matrices, ...);

sequential execution; concurrency constructs; packages/modules;
objects; general functions; generics; modifiable state; ...

13

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style: program = algorithms + data
good for decomposition

Functional style: program = functions o functions
good for reasoning

Logic programming
style:

program = facts + rules
good for searching

Object-oriented style: program = objects + messages
good for modeling(!)

Other styles and paradigms: blackboard, pipes and filters, constraints,
lists, ...

14

Pre-processor

Program

Parser Code
Generator Assembler

Parse tree / IR Machine codeAssembly code

InterpreterTranslator Bytecode
Generator

Program ... Bytecode

Bytecode
Interpreter

JIT Compiler

Compilers and Interpreters

15

Compilers and interpreters
have similar front-ends, but
have different back-ends.

In this course we will focus on programming language paradigms
and semantics of PLs, not so much on compiler technology.
However we will see how to implement some simple interpreters
based on the formal semantics of a language.

Roadmap

> Course Schedule
> Programming Paradigms
> A Quick Tour of Programming Language History

A Brief Chronology

Early 1950s “order codes” (primitive assemblers)
1957 FORTRAN the first high-level programming language
1958 ALGOL the first modern, imperative language
1960 LISP, COBOL Interactive programming; business programming
1962 APL, SIMULA the birth of OOP (SIMULA)
1964 BASIC, PL/I
1966 ISWIM first modern functional language (a proposal)
1970 Prolog logic programming is born
1972 C the systems programming language
1975 Pascal, Scheme two teaching languages
1978 CSP Concurrency matures
1978 FP Backus’ proposal
1983 Smalltalk-80, Ada OOP is reinvented
1984 Standard ML FP becomes mainstream (?)
1986 C++, Eiffel OOP is reinvented (again)
1988 CLOS, Oberon, Mathematica
1990 Haskell FP is reinvented
1990s Perl, Python, Ruby, JavaScript Scripting languages become mainstream
1995 Java OOP is reinvented for the internet
2000 C#

17

So, nothing has happened in the last twenty years? Well, there
have been quite some innovations in the area of advanced type
systems for programming languages. Scala, Rust, Swift, and other
languages have leveraged advances in type systems to help
programmers catch bugs statically. We’ll see more about that in
the Types lecture.

Fortran

History
> John Backus (1953) sought to write programs in

conventional mathematical notation, and generate code
comparable to good assembly programs.

> No language design effort (made it up as they went
along)

> Most effort spent on code generation and optimization
> FORTRAN I released April 1957; working by April 1958
> The current standard is FORTRAN 2008  

(FORTRAN 2015 is work in progress)

18

Fortran …

Innovations
> Symbolic notation for subroutines and functions
> Assignments to variables of complex expressions
> DO loops
> Comments
> Input/output formats
> Machine-independence
Successes
> Easy to learn; high level
> Promoted by IBM; addressed large user base
> (scientific computing)

19

“Hello World” in FORTRAN

PROGRAM HELLO
DO 10, I=1,10
PRINT *,'Hello World'

10 CONTINUE
STOP
END

20

All examples from the ACM "Hello World" project:
www2.latech.edu/~acm/HelloWorld.shtml

http://www2.latech.edu/~acm/HelloWorld.shtml
http://www2.latech.edu/~acm/HelloWorld.shtml

ALGOL 60

History
> Committee of PL experts formed in 1955 to design universal,

machine-independent, algorithmic language
> First version (ALGOL 58) never implemented; criticisms led to ALGOL

60
Innovations
> BNF (Backus-Naur Form) introduced to define syntax (led to syntax-

directed compilers)
> First block-structured language; variables with local scope
> Structured control statements
> Recursive procedures
> Variable size arrays
Successes
> Highly influenced design of other PLs but never displaced FORTRAN

21

ALGOL introduced both recursion and Backus-Naur form to
describe the syntax of the language. Neither of these features
existed when FORTRAN was originally designed.

“Hello World” in BEALGOL

BEGIN
FILE F (KIND=REMOTE);
EBCDIC ARRAY E [0:11];
REPLACE E BY "HELLO WORLD!";
WHILE TRUE DO

BEGIN
WRITE (F, *, E);
END;

END.

22

COBOL

History
> Designed by committee of US computer manufacturers
> Targeted business applications
> Intended to be readable by managers (!)
Innovations
> Separate descriptions of environment, data, and

processes
Successes
> Adopted as de facto standard by US DOD
> Stable standard for 25 years
> Still the most widely used PL for business applications (!)

23

“Hello World” in COBOL

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOWORLD.
000300 DATE-WRITTEN. 02/05/96 21:04.
000400* AUTHOR BRIAN COLLINS
000500 ENVIRONMENT DIVISION.
000600 CONFIGURATION SECTION.
000700 SOURCE-COMPUTER. RM-COBOL.
000800 OBJECT-COMPUTER. RM-COBOL.
001000 DATA DIVISION.
001100 FILE SECTION.
100000 PROCEDURE DIVISION.
100200 MAIN-LOGIC SECTION.
100300 BEGIN.
100400 DISPLAY " " LINE 1 POSITION 1 ERASE EOS.
100500 DISPLAY "HELLO, WORLD." LINE 15 POSITION 10.
100600 STOP RUN.
100700 MAIN-LOGIC-EXIT.
100800 EXIT.

24

PL/1

History
> Designed by committee of IBM and users (early 1960s)
> Intended as (large) general-purpose language for broad

classes of applications
Innovations
> Support for concurrency (but not synchronization)
> Exception-handling on conditions
Successes
> Achieved both run-time efficiency and flexibility (at

expense of complexity)
> First “complete” general purpose language

25

“Hello World” in PL/1

HELLO: PROCEDURE OPTIONS (MAIN);
/* A PROGRAM TO OUTPUT HELLO WORLD */
FLAG = 0;

LOOP: DO WHILE (FLAG = 0);
PUT SKIP DATA('HELLO WORLD!');

END LOOP;

END HELLO;

26

Functional Languages

> ISWIM (If you See What I Mean)
—Peter Landin (1966) — paper proposal

> FP
—John Backus (1978) — Turing award lecture

> ML
—Edinburgh
—initially designed as meta-language for theorem proving
—Hindley-Milner type inference
—“non-pure” functional language (with assignments/side effects)

> Miranda, Haskell
—“pure” functional languages with “lazy evaluation”

27

We will look at functional languages in some detail, and their
relation to lambda calculus and type systems. Although the
functional paradigm differs fundamentally from the object-
oriented paradigm, the two paradigms complement each other
nicely, and there have been many interesting integrations of the
two in modern languages (see both Python and Scala, for
example).

“Hello World” in Functional Languages

print("hello world!\n");

hello() = print "Hello World"Haskell

SML

28

Prolog

History
> Originated at U. Marseilles (early 1970s), and compilers

developed at Marseilles and Edinburgh (mid to late
1970s)

Innovations
> Theorem proving paradigm
> Programs as sets of clauses: facts, rules and questions
> Computation by “unification”
Successes
> Prototypical logic programming language
> Used in Japanese Fifth Generation Initiative

29

Prolog and other logic-based languages differ radically from other
paradigms, even though they are Turing-complete and can be
used as general-purpose languages. They have traditionally been
more popular in niche domains, such as expert systems.

“Hello World” in Prolog

hello :- printstring("HELLO WORLD!!!!").

printstring([]).
printstring([H|T]) :- put(H),
printstring(T).

30

Object-Oriented Languages

History
> Simula was developed by Nygaard and Dahl (early

1960s) in Oslo as a language for simulation
programming, by adding classes and inheritance to
ALGOL 60

> Smalltalk was developed by Xerox PARC (early 1970s) to
drive graphic workstations

Begin
while 1 = 1 do begin

outtext ("Hello World!");
outimage;

end;
End;

Transcript show:'Hello World';cr 31

Object-Oriented Languages

Innovations
> Encapsulation of data and operations (contrast ADTs)
> Inheritance to share behaviour and interfaces

Successes
> Smalltalk project pioneered OO user interfaces
> Large commercial impact since mid 1980s
> Countless new languages: C++, Objective C, Eiffel, Beta,

Oberon, Self, Perl 5, Python, Java, Ada 95 ...

32

Pretty much all industrial programming is done in OO languages,
due to their support for modularity and scalability. They have
been extremely successful for building long-lived software
systems. In recent years, however, there has been much interest in
integrations with functional programming, to improve
expressiveness and the ability to reason about programs.

Interactive Languages

> Made possible by advent of time-sharing systems (early
1960s through mid 1970s).

BASIC
> Developed at Dartmouth College in mid 1960s
> Minimal; easy to learn
> Incorporated basic O/S commands (NEW, LIST, DELETE,

RUN, SAVE)

> ...

10 print "Hello World!"
20 goto 10

33

Interactive Languages ...

APL
> Developed by Ken Iverson for concise description of numerical

algorithms
> Large, non-standard alphabet (52 characters in addition to

alphanumerics)
> Primitive objects are arrays (lists, tables or matrices)
> Operator-driven (power comes from composing array operators)
> No operator precedence (statements parsed right to left)

'HELLO WORLD'

34

Special-Purpose Languages

SNOBOL
> First successful string manipulation language
> Influenced design of text editors more than other PLs
> String operations: pattern-matching and substitution
> Arrays and associative arrays (tables)
> Variable-length strings

> ...

OUTPUT = 'Hello World!'
END

35

Symbolic Languages ...

Lisp
> Performs computations on symbolic expressions
> Symbolic expressions are represented as lists
> Small set of constructor/selector operations to create and

manipulate lists
> Recursive rather than iterative control
> No distinction between data and programs
> First PL to implement storage management by garbage

collection
> Affinity with lambda calculus (DEFUN HELLO-WORLD ()

(PRINT (LIST 'HELLO 'WORLD)))

36

4GLs

“Problem-oriented” languages
> PLs for “non-programmers”
> Very High Level (VHL) languages for specific problem

domains
Classes of 4GLs (no clear boundaries)
> Report Program Generator (RPG)
> Application generators
Query languages
> Decision-support languages
> Successes
> Highly popular, but generally ad hoc

37

“Hello World” in RPG

H
FSCREEN O F 80 80

 CRT
C

EXCPT
OSCREEN E 1
O

12 'HELLO WORLD!'

38

“Hello World” in SQL

CREATE TABLE HELLO (HELLO CHAR(12))
UPDATE HELLO

SET HELLO = 'HELLO WORLD!'
SELECT * FROM HELLO

39

Scripting Languages

echo "Hello, World!"

on OpenStack
show message box
put "Hello World!" into

message box
end OpenStack

puts "Hello World "

print "Hello, World!\n";

Unix shell (ca. 1971) developed as
user shell and scripting tool

HyperTalk (1987) was developed at
Apple to script HyperCard stacks

TCL (1990) developed as embedding
language and scripting language for
X windows applications (via Tk)

Perl (~1990) became de facto web
scripting language

History
Countless “shell languages” and “command languages” for operating
systems and configurable applications

40

Scripting Languages ...

Innovations
> Pipes and filters (Unix shell)
> Generalized embedding/command languages (TCL)

Successes
> Unix Shell, awk, emacs, HyperTalk, AppleTalk, TCL, Python, Perl,

VisualBasic ...

41

The future? The present?

> Dynamic languages
—very active

> Domain-specific languages
—very active

> Visual languages
—many developments, but still immature

> Modeling languages
—emerging from UML and MDE …

42

What you should know!

> What, exactly, is a programming language?
> How do compilers and interpreters differ?
> Why was FORTRAN developed?
> What were the main achievements of ALGOL 60?
> Why do we call C a “Third Generation Language”?
> What is a “Fourth Generation Language”?

43

Can you answer these questions?

> Why are there so many programming languages?
> Why are FORTRAN and COBOL still important

programming languages?
> Which language should you use to implement a spelling

checker?
> A filter to translate upper-to-lower case?
> A theorem prover?
> An address database?
> An expert system?
> A game server for initiating chess games on the internet?
> A user interface for a network chess client?

44

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

