
Oscar Nierstrasz

2. Stack-based Programming

/Times-Roman findfont % look up Times Roman font

18 scalefont % scale it to 18 points

setfont % set this to be the current font

100 500 moveto % go to coordinate (100, 500)

(Hello world) show % draw the string “Hello world”

showpage % render the current page

Hello world

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

References

> PostScript® Language Tutorial and Cookbook, Adobe
Systems Incorporated, Addison-Wesley, 1985

> PostScript® Language Reference Manual, Adobe
Systems Incorporated, second edition, Addison-Wesley,
1990

> Display Postscript
—http://en.wikipedia.org/wiki/Display_PostScript

> GSview for Windows & Linux
—http://www.ghostscript.com/GSview.html

3

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

What is PostScript?

PostScript “is a simple interpretive programming
language ... to describe the appearance of text, graphical
shapes, and sampled images on printed or displayed
pages.”

> introduced in 1985 by Adobe
> display standard supported by all major printer vendors
> simple, stack-based programming language
> minimal syntax
> large set of built-in operators
> PostScript programs are usually generated from applications,

rather than hand-coded

5

Although Postscript has been around for a while, it has been
extremely successful, having established itself as the de facto
standard for printers. Although hardly anyone programs in
Postscript, programs are generated every time anyone prints a
document.
The language is interesting to study as an example of a powerful
and expressive stack-based language.

Postscript variants

> Level 1:
—the original 1985 PostScript

> Level 2:
—additional support for dictionaries, memory management ...

> Display PostScript:
—special support for screen display

> Level 3:
—adds “workflow” support

6

Syntax

Comments: from “%” to next newline or formfeed
% This is a comment

Numbers: signed integers, reals and radix numbers
123 -98 0 +17 -.002 34.5

123.6e10 1E-5 8#1777 16#FFE 2#1000

Strings: text in parentheses or hexadecimal in angle brackets. Special characters are
escaped: \n \t \(\) \\ …)

Names: tokens consisting of “regular characters” but which aren’t numbers
abc Offset $$ 23A 13-456 a.b

$MyDict @pattern

Literal names: start with slash
/buffer /proc

Arrays: enclosed in square brackets
[123 /abc (hello)]

Procedures: enclosed in curly brackets
{ add 2 div }

% add top two stack items and divide by 2

7

Semantics

A PostScript program is a sequence of tokens, representing typed
objects, that is interpreted to manipulate the display and four stacks that
represent the execution state of a PostScript program:

Operand stack: holds (arbitrary) operands and results
of PostScript operators

Dictionary stack: holds only dictionaries where keys and
values may be stored

Execution stack: holds executable objects (e.g.
procedures) in stages of execution

Graphics state stack: keeps track of current coordinates etc.

8

The first of these stacks is the most important as it is used for all
computation.

The dictionary stack is used to encapsulate sets of local variables
to be used by procedures we define. The execution stack is mostly
hidden from us, and is used by Postscript to manage running
procedures. The graphics state stack will make it easy for us to
work in different coordinate systems.

Object types

Every object is either literal or executable:

Literal objects are pushed on the operand stack:
> integers, reals, string constants, literal names, arrays, procedures
Executable objects are interpreted:
> built-in operators
> names bound to procedures (in the current dictionary context)
Simple Object Types are copied by value
> boolean, fontID, integer, name, null, operator, real ...
Composite Object Types are copied by reference
> array, dictionary, string ...

9

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

The operand stack

Compute the average of 40 and 60:

At the end, the result is left on the top of the operand stack.

40 60 add 2 div

40
60
40 100

2
100 50

11

Note that numbers are literal objects, so they are pushed on the
operand stack, while the operators are executable, so they actually
modify the stack.

Aside: note that computation is expressed in RPN — “Reverse
Polish Notation” — this is easy to implement without the need for
a parser, and was used extensively on HP calculators for this
reason.

Stack and arithmetic operators

Stack Op New Stack Function
num1 num2 add sum num1 + num2
num1 num2 sub difference num1 - num2
num1 num2 mul product num1 * num2
num1 num2 div quotient num1 / num2

int1 int2 idiv quotient integer divide
int1 int2 mod remainder int1 mod int2

num den atan angle arctangent of num/den
any pop - discard top element

any1 any2 exch any2 any1 exchange top two elements
any dup any any duplicate top element

any1 ... anyn n copy any1 ... anyn any1 ... anyn duplicate top n elements
anyn ... any0 n index anyn ... any0 anyn duplicate n+1th element

and many others ...
12

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

Coordinates

Coordinates are
measured in points:

72 points = 1 inch
= 2.54 cm.

14

A4 Paper

29.7 cm = 840 points

21 cm = 595 points

(595, 840)

(595, 0)(0, 0)

(0, 840)

Drawing a Box

“A path is a set of straight lines and curves that define a region to be
filled or a trajectory that is to be drawn on the current page.”

newpath % clear the current drawing path
100 100 moveto % move to (100,100)
100 200 lineto % draw a line to (100,200)
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth % set width for drawing
stroke % draw along current path
showpage % and display current page

15

If you have a computer that directly supports Display Postscript,
you can execute these examples without sending them to a
printer. Alternatively you may use a dedicated open source
program, such as Ghostscript.

Why is the bottom left corner not perfectly closed?
Simulate what postscript is doing with a pen of 10 points width.

Path construction operators

- newpath - initialize current path to be empty
- currentpoint x y return current coordinates

x y moveto - set current point to (x, y)
dx dy rmoveto - relative moveto

x y lineto - append straight line to (x, y)
dx dy rlineto - relative lineto

x y r ang1 ang2 arc - append counterclockwise arc
- closepath - connect subpath back to start
- fill -
- stroke - draw line along current path
- showpage - output and reset current page

Others: arcn, arcto, curveto, rcurveto, flattenpath, ...

16

“Hello World” in Postscript

Before you can print text, you must
1. look up the desired font,
2. scale it to the required size, and
3. set it to be the current font.

/Times-Roman findfont % look up Times Roman font
18 scalefont % scale it to 18 points
setfont % set this to be the current font

100 500 moveto % go to coordinate (100, 500)
(Hello world) show % draw the string “Hello world”
showpage % render the current page

17
Hello world

Note that /Times-Roman and (Hello world) are literal
objects, so are pushed on the stack, not executed.

Encapsulated PostScript

EPSF is a standard format for importing and exporting
PostScript files between applications.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 90 490 200 520
/Times-Roman findfont
 18 scalefont
 setfont
100 500 moveto
(Hello world) show
showpage

18

(200, 520)

(90, 490)

Hello world

Character and font operators

Others: definefont, makefont, FontDirectory, StandardEncoding

key findfont font return font dict identified by key
font scale scalefont font’ scale font by given scale to produce font’

font setfont - set font dictionary
- currentfont font return current font

string show - print string
string stringwidth wx wy width of string in current font

19

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

Procedures and Variables

Variables and procedures are defined by binding names to literal or
executable objects.

Define a general procedure to compute averages:

key value def - associate key and value in current dictionary

/average { add 2 div } def
% bind the name “average” to “{ add 2 div }”
40 60 average

/average

{ add 2 div }

/average 40
60
40 100

2
100 50

21

Note that once the literal /average is defined, average
becomes an executable operator.

A Box procedure

Most PostScript programs consist of a prologue and a script.

% Prologue -- application specific procedures
/box { % grey x y -> __
newpath
moveto % x y -> __
0 150 rlineto % relative lineto
150 0 rlineto
0 -150 rlineto
closepath % cleanly close path!
setgray % grey -> __
fill % colour in region

} def
% Script -- usually generated
0 100 100 box
0.4 200 200 box
0.6 300 300 box
0 setgray % set drawing color back to black!
showpage

22

Postscript programs are typically generated by document
authoring systems. The programs they generate consist of
prologues that were originally hand-written, and scripts that are
generated.

Graphics state and coordinate operators

gsave saves the current path, gray value, line width and user coordinate
system

num setlinewidth - set line width
num setgray - set colour to gray value

(0 = black; 1 = white)

sx sy scale - scale user space by sx and sy
angle rotate - rotate user space by angle degrees

tx ty translate - translate user space by (tx, ty)
- matrix - create identity matrix

matrix currentmatrix matrix fill matrix with CTM
matrix setmatrix matrix replace CTM by matrix

- gsave - save graphics state
- grestore - restore graphics state

23

The graphics state operators make it easy to work in a simple
coordinate system, even if the target is scaled or rotated: instead
of drawing a rotated square, you can draw a regular square in a
rotated coordinate system.

A Fibonacci Graph

/fibInc { % m n -> n (m+n)
exch % m n -> n m
1 index % n m -> n m n
add % m n -> n (m+n)

} def
/x 0 def /y 0 def /dx 10 def
newpath
100 100 translate % make (100, 100) the origin
x y moveto % i.e., relative to (100, 100)
0 1
25 {

/x x dx add def % increment x
dup /y exch 100 idiv def % set y to 1/100 last fib val
x y lineto % draw segment
fibInc

} repeat
2 setlinewidth
stroke
showpage

24

Numbers and Strings

Numbers and other objects must be converted to strings
before they can be printed:

int string string create string of capacity int
any string cvs substring convert to string

25

Factorial

/LM 100 def % left margin
/FS 18 def % font size
/sBuf 20 string def % string buffer of length 20
/fact { % n -> n!

dup 1 lt % n -> n bool
{ pop 1 } % 0 -> 1
{

dup % n -> n n
1 % -> n n 1
sub % -> n (n-1)
fact % -> n (n-1)!NB: recursive lookup
mul % n!

}
ifelse

} def
/showInt { % n -> __

sBuf cvs show % convert an integer to a string and show it
} def

… 26

Factorial ...

/showFact { % n -> __
dup showInt % show n
(! =) show % ! =
fact showInt % show n!

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def

/Times-Roman findfont FS scalefont setfont
LM 600 moveto
0 1 20 { showFact newline } for % do from 0 to 20
showpage

27

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12
16! = 2.09228e+13
17! = 3.55687e+14
18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18

Boolean, control and string operators

any1 any2 eq bool test equal
any1 any2 ne bool test not equal

any1 any2 ge bool test greater or equal

- true true push boolean value true

- false false push boolean value false

bool proc if - execute proc if bool is true

bool proc1 proc2 ifelse - execute proc1 if bool is true else proc2

init incr limit proc for - execute proc with values init to limit by steps of incr

int proc repeat - execute proc int times

string length int number of elements in string

string index get int get element at position index

string index int put - put int into string at position index

string proc forall - execute proc for each element of string

28

A simple formatter

/LM 100 def % left margin
/RM 250 def % right margin
/FS 18 def % font size
/showStr { % string -> __

dup stringwidth pop % get (just) string’s width
currentpoint pop % current x position
add % where printing would bring us
RM gt { newline } if % newline if this would overflow RM
show

} def
/newline { % __ -> __

currentpoint exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def
/format { { showStr () show } forall } def % array -> __
/Times-Roman findfont FS scalefont setfont
LM 600 moveto

29

A simple formatter ...

[(Now) (is) (the) (time) (for) (all) (good) (men) (to)
(come) (to) (the) (aid) (of) (the) (party.)] format
showpage

30

Now is the time for
all good men to
come to the aid of
the party.

Roadmap

> PostScript objects, types and stacks
> Arithmetic operators
> Graphics operators
> Procedures and variables
> Arrays and dictionaries

Array and dictionary operators

- [mark start array construction
mark obj0 ... objn-1] array end array construction

int array array create array of length n
array length int number of elements in array

array index get any get element at index position
array index any put - put element at index position

array proc forall - execute proc for each array element
int dict dict create dictionary of capacity int

dict length int number of key-value pairs
dict maxlength int capacity
dict begin - push dict on dict stack

- end - pop dict stack

32

Using Dictionaries — Arrowheads

/arrowdict 14 dict def % make a new dictionary
arrowdict begin

/mtrx matrix def % allocate space for a matrix
end
/arrow {

arrowdict begin % open the dictionary
/headlength exch def % grab args
/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def
/tipx exch def
/taily exch def
/tailx exch def
/dx tipx tailx sub def
/dy tipy taily sub def
/arrowlength dx dx mul dy dy mul add sqrt def
/angle dy dx atan def
/base arrowlength headlength sub def
/savematrix mtrx currentmatrix def % save the coordinate system

Usage: tailx taily tipx tipy thickness headthickness headlength arrow
33

thickness

headthickness

(tipx, tipy)

(tailx, taily) = (0,0)

headlength

tailx taily translate % translate to start of arrow

angle rotate % rotate coordinates

0 halfthickness neg moveto % draw as if starting from (0,0)
base halfthickness neg lineto
base halfheadthickness neg lineto
arrowlength 0 lineto
base halfheadthickness lineto
base halfthickness lineto
0 halfthickness lineto
closepath
savematrix setmatrix % restore coordinate system

end
} def

34

thickness

headthickness

(tipx, tipy)

(tailx, taily) = (0,0)

headlength

Notice how a dictionary is used to allocate space for all the
“local” variables of the arrow procedure. We need 14 slots for 14
key-value pairs (7 parameters plus another 7 “local variables”).
By defining our own dictionary, and pushing it to the dictionary
stack, we make sure that the names we use do not conflict with
any other similar names used by other procedures.
The dictionary stack therefore serves the same purpose as the run-
time stack in most programming languages.

Instantiating Arrows

newpath
318 340 72 340 10 30 72 arrow

fill
newpath

382 400 542 560 72 232 116 arrow
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sqrt mul 2 div arrow
.65 setgray fill
showpage

Usage: tailx taily tipx tipy thickness headthickness headlength arrow
35

thickness

headthickness

(tipx, tipy)

(tailx, taily) = (0,0)

headlength

NB: arrow does not do a newpath, so arrows can be added to
existing paths

What you should know!

✎ What kinds of stacks does PostScript manage?
✎ When does PostScript push values on the operand

stack?
✎ What is a path, and how can it be displayed?
✎ How do you manipulate the coordinate system?
✎ Why would you define your own dictionaries?
✎ How do you compute a bounding box for your PostScript

graphic?

36

Can you answer these questions?

✎ How would you implement a while procedure?
✎ When should you use translate instead of moveto?
✎ How could you use dictionaries to simulate object-

oriented programming?
✎ How would you program this graphic?

37

zap

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

