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A Bit of History

Lambda Calculus
(Church, 1932-33) formal model of computation

Lisp 
(McCarthy, 1960) symbolic computations with lists

APL 
(Iverson, 1962) algebraic programming with arrays

ISWIM 
(Landin, 1966)

let and where clauses; equational reasoning; 
birth of “pure” functional programming ...

ML 
(Edinburgh, 1979) originally meta language for theorem proving

SASL, KRC, Miranda
(Turner, 1976-85) lazy evaluation

Haskell
(Hudak, Wadler, et al., 1988) “Grand Unification” of functional languages ...
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Church’s lambda calculus predates computers, but is an 
influential early model of computation that has deeply influenced 
programming language design. 
Lisp is a language that unifies data and programs. Functions are 
represented as lists that resemble lambda expressions and are then 
interpreted or compiled. 
APL is a language for manipulating arrays and arrays of arrays. 
Programs are built up of functional operators applied to arrays. 
Later languages like Mathematica owe a great deal to APL. 
ISWIM is a paper language design that has strongly influenced 
the design of functional languages like Haskell. 
ML was designed as a theorem-proving meta-language, but 
ended up being a general purpose functional language. 
Miranda and friends introduced “lazy evaluation” to the 
functional paradigm, though the idea dates from lambda calculus. 
Haskell unified and cleaned up many of these ideas.



Programming without State

Imperative style: Declarative (functional) style:

Programs in pure functional languages have no explicit state. 
Programs are constructed entirely by composing expressions.

n := x;
a := 1;
while n>0 do
begin a:= a*n;

n := n-1;
end;

fac n =
if n == 0
then 1
else n * fac (n-1)
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Note that the functional style resembles much more the typical 
mathematical (i.e., declarative) definition.



Pure Functional Programming Languages

Imperative Programming:
> Program = Algorithms + Data

Functional Programming:
> Program = Functions o Functions

What is a Program?
—A program (computation) is a transformation from input data to 

output data.
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Key features of pure functional languages

1. All programs and procedures are functions
2. There are no variables or assignments — only input 

parameters
3. There are no loops — only recursive functions
4. The value returned by a function depends only on the 

values of its parameters
5. Functions are first-class values
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Note that early functional languages like Lisp, APL and ML are 
not “pure”, that is they allow programs to have a modifiable state. 
Similarly Scala, a fusion of functional and object-oriented 
programming, is necessarily impure, as it builds on Java. 
Nevertheless, it is possible to write pure (stateless) programs even 
in impure languages.



What is Haskell?

Haskell is a general purpose, purely functional 
programming language incorporating many recent 
innovations in programming language design. Haskell 
provides higher-order functions, non-strict semantics, 
static polymorphic typing, user-defined algebraic 
datatypes, pattern-matching, list comprehensions, a 
module system, a monadic I/O system, and a rich set of 
primitive datatypes, including lists, arrays, arbitrary and 
fixed precision integers, and floating-point numbers. 
Haskell is both the culmination and solidification of many 
years of research on lazy functional languages.

— The Haskell 98 report
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The highlighted phrases are key:  
Haskell is intended to be a general-purpose, i.e., practical, 
language for arbitrary application domains. At the same time it is 
purely functional (i.e., stateless), so it is an explicit challenge to 
demonstrate that such languages can be practical. 
Higher-order functions treat functions as first-class values, so can 
take functions as arguments and can yield functions as return 
values. 
Non-strict semantics (as we shall see) means that expressions are 
evaluated lazily, i.e., values are only computed as needed. This 
enables highly expressive language features such as infinite lists. 
…



… 
Static polymorphic typing means (i) that programs are statically 
type-checked, i.e., before running them, and (ii) functions may be 
polymorphic, i.e., can take arguments of different types. In 
addition, Haskell supports (ML-style) type inference: (most) 
programs can be type-checked even without explicit type 
annotations. 
User-defined algebraic datatypes are abstract data types that 
bundle functions together with a hidden representation (like OO 
classes, but without inheritance). 
Pattern-matching offers a highly expressive way to define 
multiple cases for function definition (similar to Prolog). 
Finally, list comprehensions offer a convenient mathematical set-
like notation for defining lists of values.



“Hello World” in Haskell

hello() = print "Hello World"
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hello is a function that takes an empty tuple as an argument. It 
invokes the print function with the string (character array) 
“hello world” as its argument. 

You may well ask, “If Haskell is ‘pure’, then how can you print 
something without having a side effect?” 
Well, consider “output” as an infinite lazy list that is being 
computed over time …



To run Haskell programs, download and install the Glasgow Haskell Platform: 
https://www.haskell.org/platform/ 

To define and run code interactively, start the ghci interpreter. You can define functions in a 
file and load them, or define them interactively with let: 
% ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/  :? for 
help
Prelude> let hello () = print "hello"
Prelude> hello ()
"hello"
Prelude> :load Intro.hs
[1 of 2] Compiling HUnit            ( HUnit.hs, interpreted )
[2 of 2] Compiling Main             ( Intro.hs, interpreted )
Ok, modules loaded: HUnit, Main.
*Main> fac 5
120

You can also change the prompt with the command 
:set prompt “% “ 
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Pattern Matching

Haskell supports multiple styles for specifying case-based function 
definitions:

Patterns:

Guards:

fac' 0 = 1
fac' n = n * fac' (n-1)

-- or: fac’ (n+1) = (n+1) * fac’ n 

fac'' n | n == 0 = 1
| n >= 1 = n * fac'' (n-1)
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The evaluation order of unguarded patterns can be significant.  
Note that either constants or variables can appear in patterns. 

What happens if you try to evaluate this?: 

fac’ (-1)



Lists

Lists are pairs of elements and lists of elements:
> [ ] — stands for the empty list
> x:xs — stands for the list with x as the head and xs as 

the tail (rest of the list)

The following short forms make lists more convenient to use
> [1,2,3] — is syntactic sugar for 1:2:3:[ ]
> [1..n] — stands for [1,2,3, ... n]
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Lists in Haskell are homogeneous, that is they can only contain 
elements of a single type. We will discuss type in more detail in 
the next lecture.



Using Lists

Lists can be deconstructed using patterns:

head (x:_) = x

len [ ] = 0
len (_:xs) = 1 + len xs

prod [ ] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]
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The underscore (_) is a wildcard pattern and matches anything. 
In the definition of head, it says, “I am interested in the value of 
the head and call it x; I don’t care what the tail is.” 

Note that head [1..5] = head (1:2:3:4:5) = 1
What is head [] ? 

Note that len is defined recursively. Pure functional languages 
tend to use recursion rather than explicit loops (though loops can 
be defined in Haskell as a utility function).



List comprehensions
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A list comprehension uses a set-like notation to define a list:

[ x*x | x <- [1..10]]

➭ [1,4,9,16,25,36,49,64,81,100]



List comprehensions follow the general form: 
[ elements | definition ]

Where elements are Haskell expressions (e.g., tuples, lists etc)  
containing variables defined to the right. 

See: 
https://wiki.haskell.org/List_comprehension
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Referential Transparency

A function has the property of referential transparency if its 
value depends only on the values of its parameters.

✎ Does f(x)+f(x) equal 2*f(x)? In C? In Haskell?

Referential transparency means that “equals can be 
replaced by equals”.

In a pure functional language, all functions are referentially 
transparent, and therefore always yield the same result no 
matter how often they are called.
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Evaluation of Expressions

Expressions can be (formally) evaluated by substituting arguments for 
formal parameters in function bodies:

fac 4
➭ if 4 == 0 then 1 else 4 * fac (4-1)
➭ 4 * fac (4-1) 
➭ 4 * (if (4-1) == 0 then 1 else (4-1) * fac (4-1-1))
➭ 4 * (if 3 == 0 then 1 else (4-1) * fac (4-1-1))
➭ 4 * ((4-1) * fac (4-1-1))
➭ 4 * ((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * …))
➭ …
➭ 4 * ((4-1) * ((4-1-1) * ((4-1-1-1) * 1)))
➭ …
➭ 24

Of course, real functional languages are not implemented by 
syntactic substitution ...
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As we shall see in the lecture on lambda calculus, the semantics 
of function application can indeed be defined formally as 
syntactic substitution of arguments in the body of the function 
(while taking care to avoid name clashes).
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Lazy Evaluation

“Lazy”, or “normal-order” evaluation only evaluates expressions when 
they are actually needed. Clever implementation techniques 
(Wadsworth, 1971) allow replicated expressions to be shared, and thus 
avoid needless recalculations.
So:

Lazy evaluation allows some functions to be evaluated even if they are 
passed incorrect or non-terminating arguments:

sqr n = n * n

ifTrue True x y = x
ifTrue False x y = y

sqr (2+5) ➭ (2+5) * (2+5) ➭ 7 * 7 ➭ 49

ifTrue True 1 (5/0) ➭ 1
20



Again, as we shall see with the lambda calculus, functions can 
either be evaluated strictly, by evaluating all arguments first (i.e., 
especially if the arguments are complex expressions, not 
primitive values), or lazily, by evaluating arguments only if and 
when they are needed. 

Conventional languages (like Java) are strict, while pure 
functional languages are lazy. Nevertheless, one can program in a 
lazy style in any language, even Java.  

Strict evaluation is also known as applicative evaluation, and lazy 
evaluation is known as normal order evaluation, for reasons that 
will become clear later (only normal order is guaranteed to lead to 
a normalized value, if one exists).



Lazy Lists

Lazy lists are infinite data structures whose values are generated by 
need:

NB: The lazy list (from n) has the special syntax: [n..]

from n = n : from (n+1)

take 0 _ = [ ]
take _ [ ] = [ ]
take (n+1) (x:xs) = x : take n xs

from 100 ➭ [100,101,102,103,....

take 2 (from 100) ➭ take 2 (100:from 101)

➭ 100:(take 1 (from 101))

➭ 100:(take 1 (101:from 102))

➭ 100:101:(take 0 (from 102))

➭ 100:101:[] ➭ [100,101]
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Lazy lists are a built-in feature of pure functional languages that 
derive directly from their lazy evaluation strategy. 
One can easily simulate a lazy list in an OO language: define an 
object that knows how to compute and return its nth value, and 
caches all values computed thus far.



Programming lazy lists

Many sequences are naturally implemented as lazy lists.
Note the top-down, declarative style:

✎ How would you re-write fibs so that (a+b) only appears once?

fibs = 1 : 1 : fibsFollowing 1 1
where fibsFollowing a b = 

(a+b) : fibsFollowing b (a+b)

take 10 fibs
➭ [ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
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Note that fibs is an infinite list. We can freely manipulate it, as 
long as we don’t try to compute all the values. The take 
function only forces the computation of a finite subsequence, and 
then “throws away” the rest.



Declarative Programming Style

primes = primesFrom 2
primesFrom n = p : primesFrom (p+1)

where p = nextPrime n
nextPrime n

| isPrime n = n
| otherwise = nextPrime (n+1)

isPrime 2 = True
isPrime n = notDivisible primes n 
notDivisible (k:ps) n

| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notDivisible ps n

take 100 primes ➭ [ 2, 3, 5, 7, 11, 13, ... 523, 541 ]
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Tail Recursion

Recursive functions can be less efficient than loops because of the high 
cost of procedure calls on most hardware.

A tail recursive function calls itself only as its last operation, so the 
recursive call can be optimized away by a modern compiler since it 
needs only a single run-time stack frame:

fact 5 → fact 5 fact 4 → fact 5 fact 4 fact 3

sfac 5 → sfac 4 → sfac 3
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Tail Recursion ...

A recursive function can be converted to a tail-recursive one by 
representing partial computations as explicit function parameters:

sfac s n = if n == 0
then s
else sfac (s*n) (n-1)

sfac 1 4 ➭ sfac (1*4) (4-1)
➭ sfac (1*4) 3 
➭ sfac (1*4*3) (3-1) 
➭ …
➭ sfac (1*4*3*2*1) 0
➭ (1*4*3*2*1)
➭ ... 
➭ 24
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Recall that the last step of fac n was n*fac(n-1). In order to 
transform fac into a tail-recursive function, we must turn the rest 
of the computation (n*…) into a parameter. This is exactly what 
we do by adding the parameter s to the function sfac: it 
accumulates the progressive multiplications.  
In general this is what you need to do make recursive functions 
tail-recursive. 
Note that the value of s is not needed until the end, so it is 
computed lazily.



Multiple Recursion

Naive recursion may result in unnecessary recalculations:

Efficiency can be regained by explicitly passing calculated values:

✎ How would you write a tail-recursive Fibonacci function?

fib 1 = 1
fib 2 = 1
fib (n+2) = fib n + fib (n+1) — NB: Not tail-recursive!

fib' 1 = 1
fib' n = a

where (_,a) = fibPair n
fibPair 1 = (0,1)
fibPair n = (b,a+b)

where (a,b) = fibPair (n-1)
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Note that fibPair expresses the nth Fibonacci pair. By 
encapsulating a pair of values, everything is available to compute 
the next pair, so only one recursive step is needed.
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Higher Order Functions

Higher-order functions treat other functions as first-class values that can 
be composed to produce new functions.

map f [ ] = [ ]
map f (x:xs) = f x : map f xs

map fac [1..5]
➭ [1, 2, 6, 24, 120]

mfac l = map fac l

NB: map fac is a new function that can be applied to lists:

mfac [1..3]
➭ [1, 2, 6]
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Note that we can also write simply: 

mfac = map fac

As we shall see below, mfac and map are both Curried functions 
that take their arguments progressively.



Anonymous functions

Anonymous functions can be written as “lambda abstractions”.
The function (\x -> x * x) behaves exactly like sqr:

map (\x -> x * x) [1..10]
➭ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

sqr x = x * x

Anonymous functions are first-class values:

sqr 10
➭ 100
(\x -> x * x) 10
➭ 100
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Curried functions

A Curried function [named after the logician H.B. Curry] takes its 
arguments one at a time, allowing it to be treated as a higher-order 
function.

plus x y = x + y -- curried addition 

plus 1 2
➭ 3

plus’(1,2)
➭ 3

plus’(x,y) = x + y -- normal addition 
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Understanding Curried functions

plus x y = x + y plus x = \y -> x+yis the same as:

In other words, plus is a function of one argument that returns a 
function as its result.

plus 5 6 is the same as: (plus 5) 6

\y -> 5 + y

In other words, we invoke (plus 5), obtaining a function,

which we then pass the argument 6, yielding 11.
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Now we can see that map is a Curried function too. 

map f returns a function that maps a list of elements to a list 
with f applied to those elements. 

In particular: 
map (\x -> x * x)

returns a functions that maps a list of numbers to the list of 
squares of those numbers. 
let sqrmap = map (\x -> x * x)

sqrmap [1..5]

[1,4,9,16,25]



Using Curried functions

Curried functions are useful because we can bind their arguments 
incrementally

inc = plus 1 -- bind first argument to 1

fac = sfac 1 -- binds first argument of
where sfac s n -- a curried factorial

| n == 0  = s
| n >= 1 = sfac (s*n) (n-1)

inc 2
➭ 3
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Currying

The following (pre-defined) function takes a binary function as an 
argument and turns it into a curried function:

curry f a b = f (a, b)

plus(x,y) = x + y -- not curried!
inc = (curry plus) 1

sfac(s, n) = if n == 0 -- not curried 
then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argument
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To be continued …

> Enumerations
> User data types
> Type inference
> Type classes
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What you should know!

✎ What is referential transparency? Why is it important?
✎ When is a function tail recursive? Why is this useful?
✎ What is a higher-order function? An anonymous 

function?
✎ What are curried functions? Why are they useful?
✎ How can you avoid recalculating values in a multiply 

recursive function?
✎ What is lazy evaluation?
✎ What are lazy lists?



Can you answer these questions?

✎ Why don’t pure functional languages provide loop 
constructs?

✎ When would you use patterns rather than guards to 
specify functions?

✎ Can you build a list that contains both numbers and 
functions?

✎ How would you simplify fibs so that (a+b) is only called 
once?

✎ What kinds of applications are well-suited to functional 
programming?
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