
Oscar Nierstrasz

3. Functional Programming

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

References

> “Conception, Evolution, and Application of Functional Programming
Languages,” Paul Hudak, ACM Computing Surveys 21/3, 1989, pp
359-411.

> “A Gentle Introduction to Haskell,” Paul Hudak and Joseph H. Fasel
— www.haskell.org/tutorial/

> Haskell 2010 Language Report
— www.haskell.org

> Real World Haskell, Bryan O'Sullivan, Don Stewart, and John
Goerzen
— book.realworldhaskell.org/read/

3

Conception, Evolution, and Application of Functional
Programming Languages

http://scgresources.unibe.ch/Literature/PL/Huda89a-p359-hudak.pdf
A Gentle Introduction to Haskell

https://www.haskell.org/tutorial/
Haskell 2010 Language Report

https://www.haskell.org/onlinereport/haskell2010/
Real World Haskell

http://book.realworldhaskell.org

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

A Bit of History

Lambda Calculus
(Church, 1932-33) formal model of computation

Lisp
(McCarthy, 1960) symbolic computations with lists

APL
(Iverson, 1962) algebraic programming with arrays

ISWIM
(Landin, 1966)

let and where clauses; equational reasoning;
birth of “pure” functional programming ...

ML
(Edinburgh, 1979) originally meta language for theorem proving

SASL, KRC, Miranda
(Turner, 1976-85) lazy evaluation

Haskell
(Hudak, Wadler, et al., 1988) “Grand Unification” of functional languages ...

5

Church’s lambda calculus predates computers, but is an
influential early model of computation that has deeply influenced
programming language design.
Lisp is a language that unifies data and programs. Functions are
represented as lists that resemble lambda expressions and are then
interpreted or compiled.
APL is a language for manipulating arrays and arrays of arrays.
Programs are built up of functional operators applied to arrays.
Later languages like Mathematica owe a great deal to APL.
ISWIM is a paper language design that has strongly influenced
the design of functional languages like Haskell.
ML was designed as a theorem-proving meta-language, but
ended up being a general purpose functional language.
Miranda and friends introduced “lazy evaluation” to the
functional paradigm, though the idea dates from lambda calculus.
Haskell unified and cleaned up many of these ideas.

Programming without State

Imperative style: Declarative (functional) style:

Programs in pure functional languages have no explicit state.
Programs are constructed entirely by composing expressions.

n := x;
a := 1;
while n>0 do
begin a:= a*n;

n := n-1;
end;

fac n =
if n == 0
then 1
else n * fac (n-1)

6

Note that the functional style resembles much more the typical
mathematical (i.e., declarative) definition.

Pure Functional Programming Languages

Imperative Programming:
> Program = Algorithms + Data

Functional Programming:
> Program = Functions o Functions

What is a Program?
—A program (computation) is a transformation from input data to

output data.

7

Key features of pure functional languages

1. All programs and procedures are functions
2. There are no variables or assignments — only input

parameters
3. There are no loops — only recursive functions
4. The value returned by a function depends only on the

values of its parameters
5. Functions are first-class values

8

Note that early functional languages like Lisp, APL and ML are
not “pure”, that is they allow programs to have a modifiable state.
Similarly Scala, a fusion of functional and object-oriented
programming, is necessarily impure, as it builds on Java.
Nevertheless, it is possible to write pure (stateless) programs even
in impure languages.

What is Haskell?

Haskell is a general purpose, purely functional
programming language incorporating many recent
innovations in programming language design. Haskell
provides higher-order functions, non-strict semantics,
static polymorphic typing, user-defined algebraic
datatypes, pattern-matching, list comprehensions, a
module system, a monadic I/O system, and a rich set of
primitive datatypes, including lists, arrays, arbitrary and
fixed precision integers, and floating-point numbers.
Haskell is both the culmination and solidification of many
years of research on lazy functional languages.

— The Haskell 98 report
9

The highlighted phrases are key:
Haskell is intended to be a general-purpose, i.e., practical,
language for arbitrary application domains. At the same time it is
purely functional (i.e., stateless), so it is an explicit challenge to
demonstrate that such languages can be practical.
Higher-order functions treat functions as first-class values, so can
take functions as arguments and can yield functions as return
values.
Non-strict semantics (as we shall see) means that expressions are
evaluated lazily, i.e., values are only computed as needed. This
enables highly expressive language features such as infinite lists.
…

…
Static polymorphic typing means (i) that programs are statically
type-checked, i.e., before running them, and (ii) functions may be
polymorphic, i.e., can take arguments of different types. In
addition, Haskell supports (ML-style) type inference: (most)
programs can be type-checked even without explicit type
annotations.
User-defined algebraic datatypes are abstract data types that
bundle functions together with a hidden representation (like OO
classes, but without inheritance).
Pattern-matching offers a highly expressive way to define
multiple cases for function definition (similar to Prolog).
Finally, list comprehensions offer a convenient mathematical set-
like notation for defining lists of values.

“Hello World” in Haskell

hello() = print "Hello World"

10

hello is a function that takes an empty tuple as an argument. It
invokes the print function with the string (character array)
“hello world” as its argument.

You may well ask, “If Haskell is ‘pure’, then how can you print
something without having a side effect?”
Well, consider “output” as an infinite lazy list that is being
computed over time …

To run Haskell programs, download and install the Glasgow Haskell Platform:
https://www.haskell.org/platform/

To define and run code interactively, start the ghci interpreter. You can define functions in a
file and load them, or define them interactively with let:
% ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for
help
Prelude> let hello () = print "hello"
Prelude> hello ()
"hello"
Prelude> :load Intro.hs
[1 of 2] Compiling HUnit (HUnit.hs, interpreted)
[2 of 2] Compiling Main (Intro.hs, interpreted)
Ok, modules loaded: HUnit, Main.
*Main> fac 5
120

You can also change the prompt with the command
:set prompt “% “

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

Pattern Matching

Haskell supports multiple styles for specifying case-based function
definitions:

Patterns:

Guards:

fac' 0 = 1
fac' n = n * fac' (n-1)

-- or: fac’ (n+1) = (n+1) * fac’ n

fac'' n | n == 0 = 1
| n >= 1 = n * fac'' (n-1)

12

The evaluation order of unguarded patterns can be significant.
Note that either constants or variables can appear in patterns.

What happens if you try to evaluate this?:

fac’ (-1)

Lists

Lists are pairs of elements and lists of elements:
> [] — stands for the empty list
> x:xs — stands for the list with x as the head and xs as

the tail (rest of the list)

The following short forms make lists more convenient to use
> [1,2,3] — is syntactic sugar for 1:2:3:[]
> [1..n] — stands for [1,2,3, ... n]

13

Lists in Haskell are homogeneous, that is they can only contain
elements of a single type. We will discuss type in more detail in
the next lecture.

Using Lists

Lists can be deconstructed using patterns:

head (x:_) = x

len [] = 0
len (_:xs) = 1 + len xs

prod [] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]

14

The underscore (_) is a wildcard pattern and matches anything.
In the definition of head, it says, “I am interested in the value of
the head and call it x; I don’t care what the tail is.”

Note that head [1..5] = head (1:2:3:4:5) = 1
What is head [] ?

Note that len is defined recursively. Pure functional languages
tend to use recursion rather than explicit loops (though loops can
be defined in Haskell as a utility function).

List comprehensions

15

A list comprehension uses a set-like notation to define a list:

[x*x | x <- [1..10]]

➭ [1,4,9,16,25,36,49,64,81,100]

List comprehensions follow the general form:
[elements | definition]

Where elements are Haskell expressions (e.g., tuples, lists etc)
containing variables defined to the right.

See:
https://wiki.haskell.org/List_comprehension

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

Referential Transparency

A function has the property of referential transparency if its
value depends only on the values of its parameters.

✎ Does f(x)+f(x) equal 2*f(x)? In C? In Haskell?

Referential transparency means that “equals can be
replaced by equals”.

In a pure functional language, all functions are referentially
transparent, and therefore always yield the same result no
matter how often they are called.

17

Evaluation of Expressions

Expressions can be (formally) evaluated by substituting arguments for
formal parameters in function bodies:

fac 4
➭ if 4 == 0 then 1 else 4 * fac (4-1)
➭ 4 * fac (4-1)
➭ 4 * (if (4-1) == 0 then 1 else (4-1) * fac (4-1-1))
➭ 4 * (if 3 == 0 then 1 else (4-1) * fac (4-1-1))
➭ 4 * ((4-1) * fac (4-1-1))
➭ 4 * ((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * …))
➭ …
➭ 4 * ((4-1) * ((4-1-1) * ((4-1-1-1) * 1)))
➭ …
➭ 24

Of course, real functional languages are not implemented by
syntactic substitution ...

18

As we shall see in the lecture on lambda calculus, the semantics
of function application can indeed be defined formally as
syntactic substitution of arguments in the body of the function
(while taking care to avoid name clashes).

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

Lazy Evaluation

“Lazy”, or “normal-order” evaluation only evaluates expressions when
they are actually needed. Clever implementation techniques
(Wadsworth, 1971) allow replicated expressions to be shared, and thus
avoid needless recalculations.
So:

Lazy evaluation allows some functions to be evaluated even if they are
passed incorrect or non-terminating arguments:

sqr n = n * n

ifTrue True x y = x
ifTrue False x y = y

sqr (2+5) ➭ (2+5) * (2+5) ➭ 7 * 7 ➭ 49

ifTrue True 1 (5/0) ➭ 1
20

Again, as we shall see with the lambda calculus, functions can
either be evaluated strictly, by evaluating all arguments first (i.e.,
especially if the arguments are complex expressions, not
primitive values), or lazily, by evaluating arguments only if and
when they are needed.

Conventional languages (like Java) are strict, while pure
functional languages are lazy. Nevertheless, one can program in a
lazy style in any language, even Java.

Strict evaluation is also known as applicative evaluation, and lazy
evaluation is known as normal order evaluation, for reasons that
will become clear later (only normal order is guaranteed to lead to
a normalized value, if one exists).

Lazy Lists

Lazy lists are infinite data structures whose values are generated by
need:

NB: The lazy list (from n) has the special syntax: [n..]

from n = n : from (n+1)

take 0 _ = []
take _ [] = []
take (n+1) (x:xs) = x : take n xs

from 100 ➭ [100,101,102,103,....

take 2 (from 100) ➭ take 2 (100:from 101)

➭ 100:(take 1 (from 101))

➭ 100:(take 1 (101:from 102))

➭ 100:101:(take 0 (from 102))

➭ 100:101:[] ➭ [100,101]

21

Lazy lists are a built-in feature of pure functional languages that
derive directly from their lazy evaluation strategy.
One can easily simulate a lazy list in an OO language: define an
object that knows how to compute and return its nth value, and
caches all values computed thus far.

Programming lazy lists

Many sequences are naturally implemented as lazy lists.
Note the top-down, declarative style:

✎ How would you re-write fibs so that (a+b) only appears once?

fibs = 1 : 1 : fibsFollowing 1 1
where fibsFollowing a b =

(a+b) : fibsFollowing b (a+b)

take 10 fibs
➭ [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

22

Note that fibs is an infinite list. We can freely manipulate it, as
long as we don’t try to compute all the values. The take
function only forces the computation of a finite subsequence, and
then “throws away” the rest.

Declarative Programming Style

primes = primesFrom 2
primesFrom n = p : primesFrom (p+1)

where p = nextPrime n
nextPrime n

| isPrime n = n
| otherwise = nextPrime (n+1)

isPrime 2 = True
isPrime n = notDivisible primes n
notDivisible (k:ps) n

| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notDivisible ps n

take 100 primes ➭ [2, 3, 5, 7, 11, 13, ... 523, 541]

23

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

Tail Recursion

Recursive functions can be less efficient than loops because of the high
cost of procedure calls on most hardware.

A tail recursive function calls itself only as its last operation, so the
recursive call can be optimized away by a modern compiler since it
needs only a single run-time stack frame:

fact 5 → fact 5 fact 4 → fact 5 fact 4 fact 3

sfac 5 → sfac 4 → sfac 3

25

Tail Recursion ...

A recursive function can be converted to a tail-recursive one by
representing partial computations as explicit function parameters:

sfac s n = if n == 0
then s
else sfac (s*n) (n-1)

sfac 1 4 ➭ sfac (1*4) (4-1)
➭ sfac (1*4) 3
➭ sfac (1*4*3) (3-1)
➭ …
➭ sfac (1*4*3*2*1) 0
➭ (1*4*3*2*1)
➭ ...
➭ 24

26

Recall that the last step of fac n was n*fac(n-1). In order to
transform fac into a tail-recursive function, we must turn the rest
of the computation (n*…) into a parameter. This is exactly what
we do by adding the parameter s to the function sfac: it
accumulates the progressive multiplications.
In general this is what you need to do make recursive functions
tail-recursive.
Note that the value of s is not needed until the end, so it is
computed lazily.

Multiple Recursion

Naive recursion may result in unnecessary recalculations:

Efficiency can be regained by explicitly passing calculated values:

✎ How would you write a tail-recursive Fibonacci function?

fib 1 = 1
fib 2 = 1
fib (n+2) = fib n + fib (n+1) — NB: Not tail-recursive!

fib' 1 = 1
fib' n = a

where (_,a) = fibPair n
fibPair 1 = (0,1)
fibPair n = (b,a+b)

where (a,b) = fibPair (n-1)

27

Note that fibPair expresses the nth Fibonacci pair. By
encapsulating a pair of values, everything is available to compute
the next pair, so only one recursive step is needed.

Roadmap

> Functional vs. Imperative Programming
> Pattern Matching
> Referential Transparency
> Lazy Evaluation
> Recursion
> Higher Order and Curried Functions

Higher Order Functions

Higher-order functions treat other functions as first-class values that can
be composed to produce new functions.

map f [] = []
map f (x:xs) = f x : map f xs

map fac [1..5]
➭ [1, 2, 6, 24, 120]

mfac l = map fac l

NB: map fac is a new function that can be applied to lists:

mfac [1..3]
➭ [1, 2, 6]

29

Note that we can also write simply:

mfac = map fac

As we shall see below, mfac and map are both Curried functions
that take their arguments progressively.

Anonymous functions

Anonymous functions can be written as “lambda abstractions”.
The function (\x -> x * x) behaves exactly like sqr:

map (\x -> x * x) [1..10]
➭ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

sqr x = x * x

Anonymous functions are first-class values:

sqr 10
➭ 100
(\x -> x * x) 10
➭ 100

30

Curried functions

A Curried function [named after the logician H.B. Curry] takes its
arguments one at a time, allowing it to be treated as a higher-order
function.

plus x y = x + y -- curried addition

plus 1 2
➭ 3

plus’(1,2)
➭ 3

plus’(x,y) = x + y -- normal addition

31

Understanding Curried functions

plus x y = x + y plus x = \y -> x+yis the same as:

In other words, plus is a function of one argument that returns a
function as its result.

plus 5 6 is the same as: (plus 5) 6

\y -> 5 + y

In other words, we invoke (plus 5), obtaining a function,

which we then pass the argument 6, yielding 11.

32

Now we can see that map is a Curried function too.

map f returns a function that maps a list of elements to a list
with f applied to those elements.

In particular:
map (\x -> x * x)

returns a functions that maps a list of numbers to the list of
squares of those numbers.
let sqrmap = map (\x -> x * x)

sqrmap [1..5]

[1,4,9,16,25]

Using Curried functions

Curried functions are useful because we can bind their arguments
incrementally

inc = plus 1 -- bind first argument to 1

fac = sfac 1 -- binds first argument of
where sfac s n -- a curried factorial

| n == 0 = s
| n >= 1 = sfac (s*n) (n-1)

inc 2
➭ 3

33

Currying

The following (pre-defined) function takes a binary function as an
argument and turns it into a curried function:

curry f a b = f (a, b)

plus(x,y) = x + y -- not curried!
inc = (curry plus) 1

sfac(s, n) = if n == 0 -- not curried
then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argument

34

To be continued …

> Enumerations
> User data types
> Type inference
> Type classes

35

What you should know!

✎ What is referential transparency? Why is it important?
✎ When is a function tail recursive? Why is this useful?
✎ What is a higher-order function? An anonymous

function?
✎ What are curried functions? Why are they useful?
✎ How can you avoid recalculating values in a multiply

recursive function?
✎ What is lazy evaluation?
✎ What are lazy lists?

Can you answer these questions?

✎ Why don’t pure functional languages provide loop
constructs?

✎ When would you use patterns rather than guards to
specify functions?

✎ Can you build a list that contains both numbers and
functions?

✎ How would you simplify fibs so that (a+b) is only called
once?

✎ What kinds of applications are well-suited to functional
programming?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

