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What is a Type?

Type errors:

A type is a set of values?
> int = { ... -2, -1, 0, 1, 2, 3, ... }
> bool = { True, False }
> Point = { [x=0,y=0], [x=1,y=0], [x=0,y=1] ... }

? 5 + [ ]
ERROR: Type error in application
*** expression : 5 + [ ]
*** term : 5
*** type : Int
*** does not match : [a]
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The notion of a type as a set of values is very natural and 
intuitive: Integers are a set of values; the Java type JButton 
corresponds to all possible instance of the JButton class (or any 
of its possible subclasses).



What is a Type?

A type is a partial specification of behaviour?

> n,m:int ⇒ n+m is valid, but not(n) is an error

> n:int ⇒ n := 1 is valid, but n := “hello world” is an error

What kinds of specifications are interesting? Useful?
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A Java interface is a simple example of a partial specification of 
behaviour. Any object that conforms to a given interface can be 
used where that interface is expected. This is arguably more 
useful than the notion of a type as a set of values, because we may 
not care about the specific internal representation of an object 
but just what it can do for us.



Static and Dynamic Types

Values have static types defined by the programming 
language. A variable may have a declared, static type.
Variables and expressions have dynamic types determined 
by the values they assume at run time.

Applet myApplet = new GameApplet();

declared, static type is Applet

static type of value is GameApplet

actual dynamic type is GameApplet
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The terms “static” and “dynamic” can be very confusing, 
especially given their use as keywords in languages like C++ and 
Java. 

“Static” simply means: “based on program text alone.” Static 
typing (for example) means types are checked based on the source 
code, not by executing the program. Static analysis more 
generally means “analysis based on source code alone.” 

“Dynamic” means: “determined at run time.” So, dynamic 
analysis means “analysis based on run-time behaviour.” 

Aside: “run time” (noun) = execution time; “run-time” (adjective) = 
something happening at run time; “runtime” (noun) = run-time language 
support, e.g., in the virtual machine.



Static types restrict the programs you may write!

Program textSyntax ok
Semantics okStatic types ok

Object wyatt = new Cowboy();
wyatt.draw();

8



A static type system (typically) forbids you from running 
programs that the type system cannot validate. 

This Java code will not run without the explicit downcast (int), 
even though the downcast does nothing. 

List<Object> myList = new ArrayList<Object>();
myList.add(10);
return 2 + (int) myList.get(1);



Static and Dynamic Typing

A language is statically typed if it is always possible to determine the 
(static) type of an expression based on the program text alone.

A language is dynamically typed if only values have fixed type. Variables 
and parameters may take on different types at run-time, and must be 
checked immediately before they are used.

A language is “strongly typed” if it is impossible to perform an operation 
on the wrong kind of object. 

Type consistency may be assured by
I. compile-time type-checking,
II. type inference, or
III.dynamic type-checking.
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The term “strongly typed” is not very meaningful, just as the term 
“untyped” is misleading. Actually all programming languages 
have a notion of type; they just handle types in very different 
ways. 
The more useful distinction whether a language is statically-
typed, like Java or C++, or dynamically-typed, like Smalltalk or 
Ruby. 
Haskell is interesting in that it is statically-typed, but does not 
require explicit type annotations.



Strong, weak, static, dynamic

Static Dynamic

“Strong” Java, Pascal Smalltalk, Ruby

“Weak” C Assembler
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Kinds of Types

All programming languages provide some set of built-in 
types.

> Primitive types: booleans, integers, floats, chars ...
> Composite types: functions, lists, tuples ...

Most statically-typed modern languages provide for 
additional user-defined types.

> User-defined types: enumerations, recursive types, 
generic types, objects ...
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Type Completeness

The Type Completeness Principle:
No operation should be arbitrarily restricted in the 
types of values involved.

— Watt
First-class values can be evaluated, passed as arguments 
and used as components of composite values. 

Functional languages attempt to make no class distinctions, 
whereas imperative languages typically treat functions (at 
best) as second-class values.
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Pretty much all programming languages limit the kinds of entities 
that may be pass as values (and therefore have a meaningful 
type). In C or C++, functions are not values, though pointers to 
functions are. Classes are not values. 
In Java, methods and classes are not values, though you can 
obtain a reified object representing a class as a value, and in Java 
8, you can pass method references as values. Packages are not 
values, however. 
In Haskell, functions are first-class values, so can be passed as 
arguments and returned as values. Since Haskell is statically-
typed, the type system is capable of expressing function types.
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Function Types

Function types allow one to deduce the types of 
expressions without the need to evaluate them:

fact :: Int -> Int
42 :: Int ⇒ fact 42 :: Int

Curried types:
Int -> Int -> Int ≡ Int -> (Int -> Int)

and
plus 5 6 ≡ ((plus 5) 6)

so:
plus::Int->Int->Int ⇒ plus 5::Int->Int
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All expressions are typed. If you know the types of the individual 
sub-expressions, you can compute the type of the expression as a 
whole. 
In Haskell, you can query the type of a value with the operator :t
Prelude> :t 'a'
'a' :: Char
Prelude> :t 1
1 :: Num a => a 

Note that numbers have a “funny” type: “Num a => a” means “if 
the type a is a kind of number, then the type is a”. Since Int and 
Float are both kinds of number, we can be more specific: 
Prelude> :t 1 :: Int
1 :: Int :: Int
Prelude> :t 1 :: Float
1 :: Float :: Float



List Types

A list of values of type a has the type [a]:
[ 1 ] :: [ Int ]

NB: All of the elements in a list must be of the same type!
['a', 2, False] -- illegal! can’t be typed!
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Tuple Types

If the expressions x1, x2, ..., xn have types t1, 
t2, ..., tn respectively, then the tuple (x1, 
x2, ..., xn) has the type (t1, t2, ..., tn):

(1, [2], 3) :: (Int, [Int], Int)
('a', False) :: (Char, Bool)
((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written () and has a single element which 
is also written as ().
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User Data Types

New data types can be introduced by specifying
I. a datatype name,
II.a set of parameter types, and 
III.a set of constructors for elements of the type:

where the constructors may be either:
1. Named constructors:

2. Binary constructors (i.e., anything starting with “:”):

data DatatypeName a1 ... an = constr1 | ... | constrm

Name type1 ... typek

type1 BINOP type2
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Data types are somehow comparable to classes in object-oriented 
languages, yet also very different. A constructor is used to create 
a value of an abstract data type, but each value must be 
deconstructed before it can be used.  
Deconstruction is simply pattern matching using the constructor 
names: if a value matches a constructor, then that gives you 
access to the arguments used with that constructor to create that 
value in the first place.



Enumeration types

User data types that do not hold any data can model enumerations:

Functions over user data types must deconstruct the arguments, with 
one case for each constructor:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

whatShallIDo Sun = “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo _ = “guess I'll have to go to work”
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Notice how the data type Day has seven constructors, each 
without any arguments. 
To find out which value a day is, we just pattern match it against 
its constructors, thus revealing what it is. 
This is the opposite of encapsulation in OO languages, where you 
never deconstruct a value to access its data — instead the object 
has its own methods (services) that have exclusive access to the 
hidden data.



Union types

data Temp = Centigrade Float | Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0
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In this case Temp has two constructors, each of which takes a 
single number as an argument. By pattern matching, we 
deconstruct the value and gain access to the hidden data inside.



my tree = 

:^:

:^:

Lf 12

Lf 23 Lf 13

Lf 10

:^:

Recursive Data Types

A recursive data type provides constructors over the type itself:

data Tree a = Lf a | Tree a :^: Tree a
mytree = (Lf 12 :^: (Lf 23 :^: Lf 13)) :^: Lf 10

? :t mytree
➪ mytree :: Tree Int
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Recall that binary constructors are operators that start with “:”. 
In order to suggest tree-like structures, we pick “:^:” as our 
constructor for building a tree out of two subtrees. 
Trees therefore have two constructors: Lf, for building a leaf 
node from a single element of an arbitrary type, and :^: for 
building a composite tree from two subtrees containing elements 
of consistent types. 
Note that Haskell allows us to build a tree of strings or a tree of 
integers, but not a tree of integers and strings. 

Can you define a tree data type in Haskell that could hold either 
integers or strings? If so, how? If not, why not?



Using recursive data types

✎ What do these functions do? 
✎ Which function should be more efficient? Why?
✎ What is (l:) and what does it do?

NB: (f . g) x = f (g x)

leaves, leaves' :: Tree a -> [a]
leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ leaves r

leaves' t = leavesAcc t [ ]
where leavesAcc (Lf l) = (l:)

leavesAcc (l :^: r) = leavesAcc l . leavesAcc r
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Recall that : is Haskell's built-in operator for constructing lists 
from a head and a tail. 
Prelude> :t (:)
(:) :: a -> [a] -> [a]

Since : is a Curried function, we can supply one argument and 
get a function back. What does this function do? 

NB: Dot (.) is the traditional function composition operator from 
mathematics. It is also a Curried function: 
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
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Monomorphism

Languages like Pascal and C have monomorphic type 
systems: every constant, variable, parameter and 
function result has a unique type.

> good for type-checking
> bad for writing generic code

—it is impossible in Pascal to write a generic sort procedure
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“Monomorphic” simple means “every value has a single, unique 
type”.  
“Polymorphic” means “values may have more than one type.”



Polymorphism

A polymorphic function accepts arguments of different types:

length :: [a] -> Int
length [ ] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
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Kinds of Polymorphism

> Universal polymorphism:
—Parametric: polymorphic map function in Haskell; nil/void pointer 

type in Pascal/C
—Inclusion: subtyping — graphic objects

> Ad Hoc polymorphism:
—Overloading: + applies to both integers and reals
—Coercion: integer values can be used where reals are expected 

and v.v.
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The kind of polymorphism supported by Haskell is also known as 
parametric polymorphism (functions may be generic in their 
parameter types). Object-oriented languages also support 
inclusion or subtype polymorphism, another kind of 
polymorphism that is not part of Haskell. 

More on this in the lecture on “Objects and Types”.
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Type Inference

We can infer the type of many expressions by simply examining their 
structure. Consider:

Clearly:
length :: a -> b

Furthermore, b is obvious int, and a is a list, so:
length :: [c] -> Int

We cannot further refine the type, so we are done.

length [ ] = 0
length (x:xs) = 1 + length xs
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Note how the definition of length deconstructs lists by pattern-
matching using the list constructors, i.e., [] to construct an 
empty list and : to construct a non-empty list. 

By examining the definition of length, we can infer its type. 
First, it is clearly a function with a single argument and return 
value, so its shape is clearly a -> b (where a and b are types or 
type variables). 
Second, a is clearly a list, so its type can be refined to [c], and b 
is clearly a number (let's say Int). Conclusion: 
length :: [c] -> Int



Composing polymorphic types

We can deduce the types of expressions using polymorphic 
functions by simply binding type variables to concrete types.

Consider:
length :: [a] -> Int
map :: (a -> b) -> [a] -> [b]

Then:
map length :: [[a]] -> [Int]
[ “Hello”, “World” ] :: [[Char]]
map length [ “Hello”, “World” ] :: [Int]
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First the type of length ([a]->Int) is unified with the 
argument type of map (a->b). This means that a is bound to 
[a] and b to Int. 
The result type of map ([a]->[b]) therefore reduces to 
[[a]]->[Int]. 
Next, we bind the type of [“Hello”, “World”] 
([[Char]]) to the argument type of map length ([[a]]) so 
a binds to Char. The type of the final result is [Int]. 
Note that type variables like a or b can be bound to any Haskell 
type, no matter how complex.



Polymorphic Type Inference

Hindley-Milner Type Inference automatically determines 
the types of many polymorphic functions.

The corresponding type system is used in many modern 
functional languages, including ML and Haskell.

map f [ ] = [ ]
map f (x:xs) = f x : map f xs

map :: X -> Y -> Z

map :: (a -> b) -> -> 
    xxxx

map :: (a -> b) -> -> 

[ c ] 

[ a ] 

[ d ]

[ b ]
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The Hindley-Milner type inference algorithm was discovered 
independently first by J. Roger Hindley and later by Robin 
Milner. 

Here we only sketch out the main idea, not the details of the 
algorithm itself. The algorithm is linear in the size of the source 
code, so it is very practical for real language implementations. 
Note that the algorithm only deals with parametric 
polymorphism, not subtype polymorphism, so it cannot be used 
for languages like Java.



We will use all available information to infer the type of map. 
First we infer from the definition of map (a Curried function) that 
its type must have the form X->Y->Z. 
Next we see that the first argument, f, of type X, is a function, so 
we expand X to a->b. We also note that the second argument is 
clearly a list, so we rewrite Y as [c]. By the same reasoning we 
rewrite Z as [d]. From the expression f x we deduce that a and 
c must be the same type (since x of type c is an argument to f of 
type a->b), so we replace c by a. By similar reasoning we 
replace d by b. Now we have used all the available information 
and we stop.



Type Specialization

A polymorphic function may be explicitly assigned a more specific type:

Note that the :t command can be used to find the type of a particular 
expression that is inferred by Haskell:

idInt :: Int -> Int
idInt x = x

? :t \x -> [x]
➪ \x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
➪ \x -> [x] :: Char -> String
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Coercion vs overloading

Coercion or overloading — how do you distinguish?

✎ Are there several overloaded + functions, or just one, with 
values automatically coerced?

3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0
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Are there four different overloaded + functions; two, with 
coercion to real if one arg is int; or one with coercion to real? 



Overloading

Overloaded operators are introduced by means of type classes:

A type class must be instantiated to be used:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
-- NB: defined in standard prelude

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
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Note that type classes have nothing to do with classes in OO 
languages! A type class in Haskell has more affinity with 
interfaces in Java: A type class defines a set of overloaded 
operators that must all be implemented by a given data type.



Instantiating overloaded operators

For each overloaded instance a separate definition must be given

instance Eq Int where (==) = primEqInt

instance Eq Char where c == d = ord c == ord d

instance (Eq a, Eq b) => Eq (a,b) where
(x,y) == (u,v) = x==u && y==v

instance Eq a => Eq [a] where
[ ] == [ ] = True
[ ] == (y:ys) = False
(x:xs) == [ ] = False
(x:xs) == (y:ys) = x==y && xs==ys 
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Note the use of implication to specify derived type classes: 
If we have equality operators for types a and b, then we can 
derive equality for a pair (a,b). 
If we have equality for type a, we can derive equality for lists of 
elements of type a.



Equality for Data Types

Why not automatically provide equality for all types of values?

User data types:

✎ How would you define equality for the Tree data type?

NB: all (`elem` ys) xs tests that every x in xs is an element of ys

data Set a = Set [a]
instance Eq a => Eq (Set a) where

Set xs == Set ys = xs `subset` ys && ys `subset` xs 
where xs `subset` ys = all (`elem` ys) xs
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Here we represent a set as a list, but we cannot reuse list equality 
because the same set can be represented in different ways. 
We would like Set [1,2] == Set [2,1] 
It is not in general possible to know what equality means for a 
datatype with a given representation. As a result we cannot 
automatically infer the “right” definition of equality for a given 
datatype. 
Here we need the knowledge that the order of elements in the list 
representation is unimportant.



Equality for Functions

Functions:

Determining equality of functions is undecidable in general!

? (1==) == (\x->1==x)
ERROR: Cannot derive instance in expression
*** Expression : (==) d148 ((==) {dict} 1) (\x->(==) {dict} 1 x)
*** Required instance : Eq (Int -> Bool)
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Even worse, there may not be a way of testing equality for certain 
types of values, such as functions.



What you should know!

✎ How are the types of functions, lists and tuples specified?
✎ How can the type of an expression be inferred without 

evaluating it?
✎ What is a polymorphic function?
✎ How can the type of a polymorphic function be inferred?
✎ How does overloading differ from parametric 

polymorphism?
✎ How would you define == for tuples of length 3?
✎ How can you define your own data types?
✎ Why isn’t == pre-defined for all types?



Can you answer these questions?

✎ Can any set of values be considered a type?
✎ Why does Haskell sometimes fail to infer the type of an 

expression?
✎ What is the type of the predefined function all? How 

would you implement it?
✎ How would you define equality for the Tree data type?
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