
Oscar Nierstrasz

6. Fixed Points

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

References

> Paul Hudak, “Conception, Evolution, and Application of Functional
Programming Languages,” ACM Computing Surveys 21/3, Sept.
1989, pp 359-411.

3

Conception, Evolution, and Application of Functional
Programming Languages

http://scgresources.unibe.ch/Literature/PL/Huda89a-p359-hudak.pdf

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

Recall these encodings …

True ≡ λ x y . x
False ≡ λ x y . y

pair ≡ (λ x y z . z x y)
(x, y) ≡ pair x y

first ≡ (λ p . p True)
second ≡ (λ p . p False)

5

Representing Numbers

There is a “standard encoding” of natural numbers into the
lambda calculus:

Define:
0 ≡ (λ x . x)

succ ≡ (λ n . (False, n))
then:

1 ≡ succ 0 → (False, 0)
2 ≡ succ 1 → (False, 1)
3 ≡ succ 2 → (False, 2)
4 ≡ succ 3 → (False, 3)

6

Note how all positive integers are encoded as a pair (b,n), where b
is a Boolean indicating whether the number is zero or not (i.e.,
always False for positive integers), and n represents the number's
predecessor. In other words, the number n+1 is represented by
(False,n), which is computed by the function application succ n.
The exception is the integer value 0, which is represented by the
identify function.
Now the question is, how do we make sense of this representation
of 0?

Working with numbers

✎ What happens when we apply pred 0? What does this mean?

We can define simple functions to work with our numbers.

Consider:
iszero ≡ first

pred ≡ second
then:

iszero 1 = first (False, 0) → False
iszero 0 = (λ p . p True) (λ x . x) → True

pred 1 = second (False, 0) → 0

7

To work with our numbers, we need to do at least two further
things: check if a number is zero or not, and compute its
predecessor.
If we define iszero as the function first (seen earlier) then we see
that it works correctly both for positive integers and the value 0,
returning False for the former and True for the latter.
(Ok, it’s a trick, but it’s a cool trick!)

Similarly, if we define pred as second, it correctly returns the
predecessor of all positive integers.
What, however, is the meaning of pred 0 ?

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

Recursion

Suppose we want to define arithmetic operations on our lambda-
encoded numbers.

In Haskell we can program:

so we might try to “define”:
plus ≡ λ n m . iszero n m (plus (pred n) (succ m))

Unfortunately this is not a definition, since we are trying to use plus
before it is defined. I.e, plus is free in the “definition”!

plus n m
| n == 0 = m
| otherwise = plus (n-1) (m+1)

9

The problem is that ≡ is not part of the syntax of the lambda
calculus: we have no way to define a “global function”, but can
only work with anonymous lambdas. The only way we can bind a
name to a function is using a lambda itself. For example, if we
want to evaluate not True, then we need to first bind the names
True and False using lambdas, then not using True and False, and
finally evaluate not True:

(λ True False .
 (λ not . not True)
 (λ b.b False True)
) (λ x y.x) (λ x y.y)

With plus this trick will not work, since we would need to bind
plus before we could use it, which is impossible!

Recursive functions as fixed points

We can obtain a closed expression by abstracting over plus:
rplus ≡ λ plus n m . iszero n

m
(plus (pred n) (succ m))

rplus takes as its argument the actual plus function to use and returns as
its result a definition of that function in terms of itself. In other words, if
fplus is the function we want, then:

rplus fplus ↔ fplus

I.e., we are searching for a fixed point of rplus ...

10

The trick here is to abstract away from plus, i.e., to consider it as
a parameter to the function plus we are defining. Although this
seems circular, it is not. We are saying how to define plus, if we
are given an implementation of plus. These are two different
things.

Now the question is how we can turn this definition into the
implementation that we need!

The missing implementation is a “fixed point” of the abstraction
rplus: if we supply it as an argument, we get the same value back
as a result.

Fixed Points

A fixed point of a function f is a value p such that f p = p.

Examples:
fact 1 = 1
fact 2 = 2
fib 0 = 0
fib 1 = 1

Fixed points are not always “well-behaved”:
succ n = n + 1

✎ What is a fixed point of succ?

11

Fixed Point Theorem

Theorem:
Every lambda expression e has a fixed point p such that (e p) ↔ p.

∀e: Y e ↔ e (Y e)

Proof:
Let: Y ≡ λ f . (λ x . f (x x)) (λ x . f (x x))
Now consider:

p ≡ Y e → (λ x. e (x x)) (λ x . e (x x))
→ e ((λ x . e (x x)) (λ x . e (x x)))
= e p

So, the “magical Y combinator” can always be used to find a
fixed point of an arbitrary lambda expression.

12

The “magical” Y combinator will take any lambda expression e,
and yield a value Y e, which, when passed to e as an argument,
returns a result that is equivalent (i.e., convertible with reductions
and conversions) to Y e. Y e is therefore a fixpoint (AKA “fixed
point”) of e.
Y is “magical” in the sense that it is not immediately obvious why
it should work, but it is not too hard to see why ...

How does Y work?

Recall the non-terminating expression

Ω = (λ x . x x) (λ x . x x)

Ω loops endlessly without doing any productive work.
Note that (x x) represents the body of the “loop”.
We simply define Y to take an extra parameter f, and put it into the loop,
passing it the body as an argument:

Y ≡ λ f . (λ x . f (x x)) (λ x . f (x x))

So Y just inserts some productive work into the body of Ω

13

Note how Ω just loops around endlessly without doing anything
useful. The expression (x x) represents this loop.

Recall that Y e is the fixpoint we seek. We define Y just like Ω,
but we add an extra parameter f (which will be bound to e), and
we pass it the result of the loop, i.e., (x x). Now it is up to e to
decide when to terminate the loop!

If e is defined recursively, it will loop as often as it needs to, and
then end with the result it is supposed to compute. By the trick of
self-application in (x x), it can get as many copies of the fixpoint
as it needs, but it no longer has to loop endlessly.

Using the Y Combinator

✎What are succ and pred of (False, (Y succ))? What does this
represent?

Consider:
f ≡ λ x. True

then:
Y f → f (Y f) by FP theorem

= (λ x. True) (Y f)
→ True

Consider:
Y succ → succ (Y succ) by FP theorem

→ (False, (Y succ))

14

Recall that the fixpoint theorem states that
Y e → e (Y e)

We simply apply this rewriting and evaluate the resulting
expression. Note that for any constant function (λ x. k) (where k
is a constant):

Y (λ x. k) → (λ x. k) (Y (λ x. k)) → k

In other words, the fixpoint of a constant function is that constant,
which is as we expect.

Recursive Functions are Fixed Points

We seek a fixed point of:

rplus ≡ λ plus n m . iszero n m (plus (pred n) (succ m))

By the Fixed Point Theorem, we simply define:

plus ≡ Y rplus

Since this guarantees that:

rplus plus ↔ plus
as desired!

15

Note that the “new” plus that we are defining globally is not the
same as the locally bound name plus within rplus, but when
we apply rplus plus, the globally defined one gets bound to
the local one.

Unfolding Recursive Lambda
Expressions

plus 1 1 = (Y rplus) 1 1
→ rplus plus 1 1 (NB: fp theorem)
→ iszero 1 1 (plus (pred 1) (succ 1))
→ False 1 (plus (pred 1) (succ 1))
→ plus (pred 1) (succ 1)
→ rplus plus (pred 1) (succ 1)
→ iszero (pred 1) (succ 1)

 (plus (pred (pred 1)) (succ (succ 1)))
→ iszero 0 (succ 1) (...)
→ True (succ 1) (...)
→ succ 1
→ 2

16

Here we can see how, like Ω, Y rplus loops repeatedly. The
difference is that we can do productive work at each step, and
decide when to terminate the loop with the iszero test.
Note that we use the fixpoint theorem also in lines 5 and 6 to
rewrite plus as rplus plus.

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

The Typed Lambda Calculus

There are many variants of the lambda calculus.
The typed lambda calculus just decorates terms with type annotations:
Syntax:

e ::= xτ | e1τ2→ τ1 e2τ2 | (λ xτ2.eτ1)τ2→ τ1

Operational Semantics:

Example:
True ≡ (λ xA . (λ yB . xA)B→A) A →(B→A)

λ xτ2 . eτ1 ⇔ λ yτ2 . [yτ2/xτ2] eτ1 yτ2 not free in eτ1

(λ xτ2 . e1τ1) e2τ2
⇒ [e2τ2/xτ2] e1τ1

λ xτ2. (eτ1 xτ2) ⇒ eτ1 xτ2 not free in eτ1

18

This looks complicated due to the messy annotations, but the
operational semantics is exactly the same as in the untyped
lambda calculus. The α, β and η rules work just as before, they
just keep track of additional type information, encoding for each
expression and subexpression what its type is.

Note that this is a monomorphic type system: every value as a
unique, concrete type, not a variable type. The function
λ xA . xA

Takes arguments only of type A, not any other type!

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

The Polymorphic Lambda Calculus

Polymorphic functions like “map” cannot be typed in the typed lambda
calculus!
Need type variables to capture polymorphism:
β reduction (ii):

(λ xν . e1τ1) e2τ2 ⇒ [τ2/ν] [e2τ2/xν] e1τ1

Example:
True ≡ (λ xα. (λ yβ . xα)β→α)α→(β→α)

Trueα→(β→α) aA bB → (λ yβ . aA) β→A bB

→ aA

20

NB: some superscripts have been left off for readability!
Type variables solve the problem with the monomorphic typed
lambda calculus. Now we can write:
λ xα . xα

where α is a type variable. This function will accept an argument
of any type A, which will then be bound to α. In other words, if
this function accepts an argument of type A, it will return an
value x of the same type A.

Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and Haskell)
works by inferring the type annotations for a slightly restricted
subcalculus: polymorphic functions.
If:

then

is ok, but if

then

is a type error since the argument len cannot be assigned a unique
type!

doubleLen len len' xs ys = (len xs) + (len' ys)

doubleLen length length “aaa” [1,2,3]

doubleLen' len xs ys = (len xs) + (len ys)

doubleLen' length “aaa” [1,2,3]

21

Polymorphism and self application

Even the polymorphic lambda calculus is not powerful
enough to express certain lambda terms.

Recall that both Ω and the Y combinator make use of “self
application”:

Ω = (λ x . x x) (λ x . x x)

✎ What type annotation would you assign to (λ x . x x)?

Note that there is no reasonable type that we can assign to an
expression like x x. It is therefore impossible to express Y in the
typed lambda calculus, so there is no way to express recursion,
and consequently, one can only express terminating programs
using it!
For the same reason, we cannot write Y in Haskell (try it!).

Built-in recursion with letrec AKA def AKA µ

> Most programming languages provide direct support for
recursively-defined functions (avoiding the need for Y)

(def f.E) e → ([(def f.E) / f] E) e

(def plus. λ n m . iszero n m (plus (pred n) (succ m))) 2 3
→ (λ n m . iszero n m ((def plus. …) (pred n) (succ m))) 2 3
→ (iszero 2 3 ((def plus. …) (pred 2) (succ 3)))
→ ((def plus. …) (pred 2) (succ 3))
→ …

23

The “def” feature allows you to assign a name (such as f) to a
lambda expression E, where f may be used recursively within E.
The β reduction rule for this extended lambda calculus simply
propagates the definition to the recursive uses of f within E
(exactly as Y does!).

Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi

Featherweight Java

Igarashi, Pierce and Wadler, 
“Featherweight Java: a minimal core
calculus for Java and GJ”, 
OOPSLA ’99
doi.acm.org/10.1145/320384.320395

Used to prove that
generics could be
added to Java
without breaking the
type system.

25

Featherweight Java is an object calculus inspired by the lambda
calculus. Most of the rules have a precondition (over the
horizontal line) and a conclusion (below the line). There are rules
for dynamic semantics (reductions) and static semantics (type
rules).
The β reduction rule is called R-INVK. It says, if method m in
class C takes an argument array x and has a body e0, then an
invocation of a method m with argument array d on an object
(new C(e)) reduces to e0, with arguments d replacing x and
(new C(e)) replacing this. (Pretty much like in the lambda
calculus.
Featherweight Java is especially interesting because (1) it was
used to prove some defects in the Java type system, and (2) it
showed that the type system could be extended to incorporate
generics without breaking existing code!

Other Calculi

Many calculi have been developed to study the semantics of
programming languages.

Object calculi: model inheritance and subtyping ..
— lambda calculi with records

Process calculi: model concurrency and communication
— CSP, CCS, pi calculus, CHAM, blue calculus

Distributed calculi: model location and failure
— ambients, join calculus

26

A quick look at the π calculus

ν(x)(x<z>.0 | x(y).y<x>.x(y).0) | z(v).v<v>.0

→ ν(x)(0 | z<x>.x(y).0) | z(v).v<v>.0

→ ν(x)(0 | x(y).0 | x<x>.0)

→ ν(x)(0 | 0 | 0)
en.wikipedia.org/wiki/Pi_calculus

input

27

new channel output concurrency

1. The value z is output along channel x, to the process
x(y).y<x>..., causing y to be bound to z.

2. The value x is output along channel z to the receiving process
at the right, z(v).v<v>.0, but since x is bound by the
scope of ν(x)(...), this forces the receiving process to
migrate within the scope of ν(x)(...). Since there is no
free x in the migrating process, no variable needs o be
renamed.

3. Finally, x is output along channel x, binding it to y. The
subsequent processes are all dead (0).

What you should know!

✎ Why isn’t it possible to express recursion directly in the
lambda calculus?

✎ What is a fixed point? Why is it important?
✎ How does the typed lambda calculus keep track of the

types of terms?
✎ How does a polymorphic function differ from an ordinary

one?

Can you answer these questions?

✎ How would you model negative integers in the lambda
calculus? Fractions?

✎ Is it possible to model real numbers? Why, or why not?
✎ Are there more fixed-point operators other than Y?
✎ How can you be sure that unfolding a recursive

expression will terminate?
✎ Would a process calculus be Church-Rosser?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

