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Recall these encodings …

True ≡ λ x y . x
False ≡ λ x y . y

pair ≡ (λ x y z . z x y)
(x, y) ≡ pair x y

first ≡ (λ p . p True )
second ≡ (λ p . p False )
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Representing Numbers

There is a “standard encoding” of natural numbers into the 
lambda calculus:

Define:
0 ≡ (λ x . x )

succ ≡ (λ n . (False, n) )
then:

1 ≡ succ 0 → (False, 0)
2 ≡ succ 1 → (False, 1)
3 ≡ succ 2 → (False, 2)
4 ≡ succ 3 → (False, 3)
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Note how all positive integers are encoded as a pair (b,n), where b 
is a Boolean indicating whether the number is zero or not (i.e., 
always False for positive integers), and n represents the number's 
predecessor. In other words, the number n+1 is represented by 
(False,n), which is computed by the function application succ n. 
The exception is the integer value 0, which is represented by the 
identify function. 
Now the question is, how do we make sense of this representation 
of 0?



Working with numbers

✎ What happens when we apply pred 0? What does this mean?

We can define simple functions to work with our numbers.

Consider:
iszero ≡ first

pred ≡ second
then:

iszero 1 = first (False, 0) → False
iszero 0 = (λ p . p True ) (λ x . x ) → True

pred 1 = second (False, 0) → 0
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To work with our numbers, we need to do at least two further 
things: check if a number is zero or not, and compute its 
predecessor. 
If we define iszero as the function first (seen earlier) then we see 
that it works correctly both for positive integers and the value 0, 
returning False for the former and True for the latter. 
(Ok, it’s a trick, but it’s a cool trick!)  

Similarly, if we define pred as second, it correctly returns the 
predecessor of all positive integers. 
What, however, is the meaning of pred 0 ?
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Recursion

Suppose we want to define arithmetic operations on our lambda-
encoded numbers.

In Haskell we can program:

so we might try to “define”:
plus ≡ λ n m . iszero n m ( plus ( pred n ) ( succ m ) )

Unfortunately this is not a definition, since we are trying to use plus 
before it is defined. I.e, plus is free in the “definition”!

plus n m
| n == 0 = m
| otherwise = plus (n-1) (m+1)
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The problem is that ≡ is not part of the syntax of the lambda 
calculus: we have no way to define a “global function”, but can 
only work with anonymous lambdas. The only way we can bind a 
name to a function is using a lambda itself. For example, if we 
want to evaluate not True, then we need to first bind the names 
True and False using lambdas, then not using True and False, and 
finally evaluate not True:  

(λ True False .  
  (λ not . not True) 
  (λ b.b False True) 
) (λ x y.x) (λ x y.y) 

With plus this trick will not work, since we would need to bind 
plus before we could use it, which is impossible!



Recursive functions as fixed points

We can obtain a closed expression by abstracting over plus:
rplus ≡  λ plus n m . iszero n

m
( plus ( pred n ) ( succ m ) )

rplus takes as its argument the actual plus function to use and returns as 
its result a definition of that function in terms of itself. In other words, if 
fplus is the function we want, then:

rplus fplus ↔ fplus

I.e., we are searching for a fixed point of rplus ...
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The trick here is to abstract away from plus, i.e., to consider it as 
a parameter to the function plus we are defining. Although this 
seems circular, it is not. We are saying how to define plus, if we 
are given an implementation of plus. These are two different 
things. 

Now the question is how we can turn this definition into the 
implementation that we need! 

The missing implementation is a “fixed point” of the abstraction 
rplus: if we supply it as an argument, we get the same value back 
as a result.



Fixed Points

A fixed point of a function f is a value p such that f p = p.

Examples:
fact 1 = 1
fact 2 = 2
fib 0 = 0
fib 1 = 1

Fixed points are not always “well-behaved”:
succ n = n + 1

✎ What is a fixed point of succ?
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Fixed Point Theorem

Theorem:
Every lambda expression e has a fixed point p such that (e p) ↔ p.

∀e: Y e  ↔ e (Y e) 

Proof:
Let: Y ≡ λ f . (λ x . f (x x)) (λ x . f (x x))
Now consider:

p ≡ Y e → (λ x. e (x x)) (λ x . e (x x))
→ e ((λ x . e (x x)) (λ x . e (x x)))
= e p

So, the “magical Y combinator” can always be used to find a 
fixed point of an arbitrary lambda expression.
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The “magical” Y combinator will take any lambda expression e, 
and yield a value Y e, which, when passed to e as an argument, 
returns a result that is equivalent (i.e., convertible with reductions 
and conversions) to Y e. Y e is therefore a fixpoint (AKA “fixed 
point”) of e. 
Y is “magical” in the sense that it is not immediately obvious why 
it should work, but it is not too hard to see why ...



How does Y work?

Recall the non-terminating expression

Ω = (λ x . x x) (λ x . x x)

Ω loops endlessly without doing any productive work.
Note that (x x) represents the body of the “loop”.
We simply define Y to take an extra parameter f, and put it into the loop, 
passing it the body as an argument:

Y ≡ λ f . (λ x . f (x x)) (λ x . f (x x))

So Y just inserts some productive work into the body of Ω
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Note how Ω just loops around endlessly without doing anything 
useful. The expression (x x) represents this loop.  

Recall that Y e is the fixpoint we seek. We define Y just like Ω, 
but we add an extra parameter f (which will be bound to e), and 
we pass it the result of the loop, i.e., (x x). Now it is up to e to 
decide when to terminate the loop! 

If e is defined recursively, it will loop as often as it needs to, and 
then end with the result it is supposed to compute. By the trick of 
self-application in (x x), it can get as many copies of the fixpoint 
as it needs, but it no longer has to loop endlessly.



Using the Y Combinator

✎What are succ and pred of (False, (Y succ))? What does this 
represent?

Consider:
f ≡ λ x. True

then:
Y f → f (Y f) by FP theorem

= (λ x. True) (Y f)
→ True

Consider:
Y succ → succ (Y succ) by FP theorem

→ (False, (Y succ))
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Recall that the fixpoint theorem states that 
Y e → e (Y e) 

We simply apply this rewriting and evaluate the resulting 
expression. Note that for any constant function (λ x. k) (where k 
is a constant): 

Y (λ x. k) → (λ x. k) (Y (λ x. k)) → k 

In other words, the fixpoint of a constant function is that constant, 
which is as we expect.



Recursive Functions are Fixed Points

We seek a fixed point of:

rplus ≡  λ plus n m . iszero n m ( plus ( pred n ) ( succ m ) )

By the Fixed Point Theorem, we simply define:

plus ≡ Y rplus

Since this guarantees that:

rplus plus ↔ plus
as desired!
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Note that the “new” plus that we are defining globally is not the 
same as the locally bound name plus within rplus, but when 
we apply rplus plus, the globally defined one gets bound to 
the local one.



Unfolding Recursive Lambda 
Expressions

plus 1 1 = (Y rplus) 1 1
→ rplus plus 1 1                                (NB: fp theorem)
→ iszero 1 1 (plus (pred 1) (succ 1) )
→ False 1 (plus (pred 1) (succ 1) )
→ plus (pred 1) (succ 1)
→ rplus plus (pred 1) (succ 1)
→ iszero (pred 1) (succ 1)

   (plus (pred (pred 1) ) (succ (succ 1) ) )
→ iszero 0 (succ 1) (...)
→ True (succ 1) (...)
→ succ 1
→ 2
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Here we can see how, like Ω, Y rplus loops repeatedly. The 
difference is that we can do productive work at each step, and 
decide when to terminate the loop with the iszero test. 
Note that we use the fixpoint theorem also in lines 5 and 6 to 
rewrite plus as rplus plus.
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The Typed Lambda Calculus

There are many variants of the lambda calculus.
The typed lambda calculus just decorates terms with type annotations:
Syntax:

e ::= xτ | e1τ2→ τ1 e2τ2 | (λ xτ2.eτ1)τ2→ τ1

Operational Semantics:

Example:
True ≡ (λ xA . (λ yB . xA)B→A) A →(B→A)

λ xτ2 . eτ1 ⇔ λ yτ2 . [yτ2/xτ2] eτ1 yτ2 not free in eτ1

(λ xτ2 . e1τ1) e2τ2
⇒ [e2τ2/xτ2] e1τ1

λ xτ2. (eτ1 xτ2) ⇒ eτ1 xτ2 not free in eτ1
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This looks complicated due to the messy annotations, but the 
operational semantics is exactly the same as in the untyped 
lambda calculus. The α, β and η rules work just as before, they 
just keep track of additional type information, encoding for each 
expression and subexpression what its type is. 

Note that this is a monomorphic type system: every value as a 
unique, concrete type, not a variable type. The function 
λ xA . xA 

Takes arguments only of type A, not any other type!
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The Polymorphic Lambda Calculus

Polymorphic functions like “map” cannot be typed in the typed lambda 
calculus!
Need type variables to capture polymorphism:
β reduction (ii):

(λ xν . e1τ1) e2τ2 ⇒ [τ2/ν] [e2τ2/xν] e1τ1

Example:
True ≡ (λ xα. (λ yβ . xα)β→α)α→(β→α) 

Trueα→(β→α) aA bB → (λ yβ . aA ) β→A bB

→  aA 
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NB: some superscripts have been left off for readability!  
Type variables solve the problem with the monomorphic typed 
lambda calculus.  Now we can write: 
λ xα . xα 

where α is a type variable. This function will accept an argument 
of any type A, which will then be bound to α. In other words, if 
this function accepts an argument of type A, it will return an 
value x of the same type A.



Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and Haskell) 
works by inferring the type annotations for a slightly restricted 
subcalculus: polymorphic functions.
If: 

then

is ok, but if

then

is a type error since the argument len cannot be assigned a unique 
type! 

doubleLen len len' xs ys = (len xs) + (len' ys)

doubleLen length length “aaa” [1,2,3]

doubleLen' len xs ys = (len xs) + (len ys)

doubleLen' length “aaa” [1,2,3] 
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Polymorphism and self application

Even the polymorphic lambda calculus is not powerful 
enough to express certain lambda terms.

Recall that both Ω and the Y combinator make use of “self 
application”:

Ω = (λ x . x x ) (λ x . x x )

✎ What type annotation would you assign to (λ x . x x)?



Note that there is no reasonable type that we can assign to an 
expression like x x. It is therefore impossible to express Y in the 
typed lambda calculus, so there is no way to express recursion, 
and consequently, one can only express terminating programs 
using it!  
For the same reason, we cannot write Y in Haskell (try it!).



Built-in recursion with letrec AKA def AKA µ

> Most programming languages provide direct support for 
recursively-defined functions (avoiding the need for Y)

(def f.E) e → ([(def f.E) / f] E) e 

(def plus. λ n m . iszero n m ( plus ( pred n ) ( succ m ))) 2 3
→ (λ n m . iszero n m ((def plus. …) ( pred n ) ( succ m ))) 2 3
→ (iszero 2 3 ((def plus. …) ( pred 2 ) ( succ 3 )))
→ ((def plus. …) ( pred 2 ) ( succ 3 ))
→ …
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The “def” feature allows you to assign a name (such as f) to a 
lambda expression E, where f may be used recursively within E. 
The β reduction rule for this extended lambda calculus simply 
propagates the definition to the recursive uses of f within E 
(exactly as Y does!).



Roadmap

> Representing Numbers
> Recursion and the Fixed-Point Combinator
> The typed lambda calculus
> The polymorphic lambda calculus
> Other calculi



Featherweight Java

Igarashi, Pierce and Wadler, 
“Featherweight Java: a minimal core 
calculus for Java and GJ”, 
OOPSLA ’99
doi.acm.org/10.1145/320384.320395

Used to prove that 
generics could be 
added to Java 
without breaking the 
type system.
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Featherweight Java is an object calculus inspired by the lambda 
calculus. Most of the rules have a precondition (over the 
horizontal line) and a conclusion (below the line). There are rules 
for dynamic semantics (reductions) and static semantics (type 
rules). 
The β reduction rule is called R-INVK. It says, if method m in 
class C takes an argument array x and has a body e0, then an 
invocation of a method m with argument array d on an object 
(new C(e)) reduces to e0, with arguments d replacing x and 
(new C(e)) replacing this. (Pretty much like in the lambda 
calculus. 
Featherweight Java is especially interesting because (1) it was 
used to prove some defects in the Java type system, and (2) it 
showed that the type system could be extended to incorporate 
generics without breaking existing code!



Other Calculi

Many calculi have been developed to study the semantics of 
programming languages.

Object calculi: model inheritance and subtyping ..
— lambda calculi with records

Process calculi: model concurrency and communication
— CSP, CCS, pi calculus, CHAM, blue calculus

Distributed calculi: model location and failure
— ambients, join calculus
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A quick look at the π calculus

ν(x)(x<z>.0 | x(y).y<x>.x(y).0) | z(v).v<v>.0

→ ν(x)(0 | z<x>.x(y).0) | z(v).v<v>.0

→ ν(x)(0 | x(y).0 | x<x>.0)

→ ν(x)(0 | 0 | 0)
en.wikipedia.org/wiki/Pi_calculus

input
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1. The value z is output along channel x, to the process 
x(y).y<x>..., causing y to be bound to z. 

2. The value x is output along channel z to the receiving process 
at the right, z(v).v<v>.0, but since x is bound by the 
scope of ν(x)(...), this forces the receiving process to 
migrate within the scope of ν(x)(...). Since there is no 
free x in the migrating process, no variable needs o be 
renamed. 

3. Finally, x is output along channel x, binding it to y. The 
subsequent processes are all dead (0).



What you should know!

✎ Why isn’t it possible to express recursion directly in the 
lambda calculus?

✎ What is a fixed point? Why is it important?
✎ How does the typed lambda calculus keep track of the 

types of terms?
✎ How does a polymorphic function differ from an ordinary 

one?



Can you answer these questions?

✎ How would you model negative integers in the lambda 
calculus? Fractions? 

✎ Is it possible to model real numbers? Why, or why not?
✎ Are there more fixed-point operators other than Y?
✎ How can you be sure that unfolding a recursive 

expression will terminate?
✎ Would a process calculus be Church-Rosser?
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