
Oscar Nierstrasz

8. Objects and Prototypes

Based on material by Adrian Lienhard

All examples can be found in the usual git repo,

git@scg.unibe.ch:lectures-pl-examples

as well as online:

http://scg.unibe.ch/download/lectures/pl-examples/JavaScript/

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

2

References

> JavaScript: The Definitive Guide, D. Flanagan, O’Reilly, 5th edition

> JavaScript: The Good Parts, D. Crockford, O’Reilly

> JavaScript Guide & Reference, Mozilla Developer Center, http://

developer.mozilla.org/en/docs/JavaScript
> Using Prototypical Objects to Implement Shared Behavior in Object

Oriented Systems, H. Lieberman, OOPSLA’86

> ECMAScript Language Specification — 5th edition, http://www.ecma-
international.org/publications/standards/Ecma-262.htm

> ECMAScript 6 features —http://es6-features.org/#Constants

3

http://developer.mozilla.org/en/docs/JavaScript
http://developer.mozilla.org/en/docs/JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://es6-features.org/#Constants

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

4

Class-based vs. Prototype-based languages

> Classes share methods and
define common properties

> Inheritance along class chain

> Instances have exactly the

properties and behavior
defined by their class

> Structure typically cannot be
changed at runtime

Class-based: Prototype-based:
> No classes, only objects

> Objects define their own

properties and methods

> Objects delegate to their

prototype(s)

> Any object can be the prototype

of another object

Prototype-based languages unify objects and classes

6

In class-based languages, classes may (e.g., in Smalltalk) or may
not be (e.g., in Java) be first-class objects. Classes enable sharing
of behaviour and structure. There is no inherent reason why these
responsibilities could not be part of ordinary objects, which leads
to the idea of prototype-based languages.

The approach was first proposed by Henry Lieberman in an 1986
OOPSLA paper. The central idea is that an object can delegate
any responsibility to another object. If an object does not
understand a particular message (request), it can delegate it to
another object. (Delegation is similar to forwarding, except that
the identity of the original object is bound to self — “this” in
JS — so self-sends will be correctly handled, as in class-based
languages.)

Prototype-based Languages

No classes ⇒simpler descriptions of objects

Examples first (vs. abstraction first)

Fewer concepts ⇒simpler programming model

Many languages (but only few used outside research):

> JavaScript, Self, Io, NewtonScript, Omega, Cecil, Lua, Object-

Lisp, Exemplars, Agora, ACT-I, Kevo, Moostrap, Obliq, Garnet

7

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

8

What is JavaScript?

> Introduced in 1995 by Netscape

> Minimal object model:

—everything is an object (almost)

—functions are first-class objects, closures

> Prototype-based delegation

> Dynamically typed, interpreted

> Platforms: web browsers and servers, Java 6, embedded

in various applications (Flash, Photoshop, ...)

> What it is not:

—No direct relationship to Java
—Not only for scripting web browsers

9

Syntax

Comments:
// single line comment

/* multi

line comment */

Identifiers: First character must be a letter, _, or $; subsequent characters can
be digits: i, v17, $str, __proto__

Basic literals:
'a string', "another string", "that's also a string"

17, 6.02e-32

true, false, null, undefined

Object literals:

var point = { x:1, y:2 }

empty: {}

nested:	 var rect = {

 	 upperLeft: { x:1, y:2 },

 lowerRight: { x:4, y:5 } }

Function literals: var square = function(x) { return x*x; }

Array literals: [1,2,3] []

Operators: assignment: = equality: == strict equality (identity): ===

10

Object Properties

var book = { title: 'JavaScript' };

book.title; //=>'JavaScript'

Adding new properties
(at runtime)

Reading properties

book.author = 'J. Doe';

'author' in book; //=>true

Inspecting objects

var result = '';

for (var name in book) {

 result += name + '=';

 result += book[name] + ' ';

};

//=>title=JavaScript author=J. Doe

Deleting properties delete book.title;

'title' in book; //=>false
11

In JavaScript (JS), an object consists of a set of properties. These
may be either data values (like strings, numbers, or other objects),
or they may be functions (lambdas). In other words, an object is a
dictionary.

Methods

var counter = { val : 0 }

counter.inc = function() {

 this.val++;

}

counter.inc();

counter.val; // => 1

Property and method slots are unified.
Functions are first-class objects.

var f = counter.inc;

typeof f; //=> 'function'

Methods are just functions
that are assigned to
properties of an object

Accessing (vs. executing)
methods

At runtime the keyword
this is bound to the
object of the method

12

A prototype, unlike an object in a class-based language, may hold
its methods as values of its properties. No distinction is made
between executable properties and other data values. In practice,
methods are generally stored in shared prototypes, but this is not
required by the object model.

In the example we see that properties can be added incrementally
to objects in JS. The inc property is a function (a lambda) that is
added to the counter object after it is first created.

Note how the variable “this” (AKA self) refers to the object
itself (the original receiver).

NB: the var declaration creates a variable in the current lexical
scope (more on this later). Without “var”, JS will search for it in
enclosing scopes, and if it does not find the variable, will
(silently) create it in the global scope.

Scripting a web browser

13

<html>

<head>

<title>Counter</title>

<script type="text/javascript">

var counter1 = {

val : 0,

name : "counter1",

inc : function() { this.val++; update(this); },

dec : function() { this.val--; update(this); }

}

function update(counter) {

document.getElementById(counter.name).innerHTML=counter.val;

}

</script>

</head>

<body>

<h1 id="counter1">0</h1>

<button type="button" onclick="counter1.dec()">--</button>

<button type="button" onclick="counter1.inc()">++</button>

</body>

</html>

JS was designed as client-side scripting language for web pages,
somewhat like Java “applets”, but specified as dynamic scripts
within HTML. JS can control functionality of the client’s web
browser, and (to some extent) has access to server side. Unlike
PHP (which is executed server-side), JS is downloaded as part of
web page, and can be viewed in source form on the client.

This example illustrates how JS can control updates of the DOM
(Domain Object Model) of the web page, modifying the value of
the header with id “counter1” when the -- and ++ buttons are
clicked.

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

14

Delegation

var counter2 = Object.create(counter1);

counter2.val = 0;

counter2.name = "counter2";

An object delegates to its prototype object (the Mozilla interpreter allows one
to access the prototype through the property __proto__)

The mechanism to share data and behavior is delegation

Binding not found in object,
then lookup in prototype

15

prototype

__proto__
val : 0
name : "counter2"

counter2

__proto__
val : 1
name : "counter1"
inc : function …
dec : function ...

counter1

In principle, an object may be self-contained, holding all its data
and methods as properties. In practice, it make sense to share
methods between similar objects, just as in class-based languages.
Every object can have a prototype, to which it delegates requests.

The JS console shown in the slide is provided by the Chrome web
browser. It offers a convenient interface for inspecting and
interacting with JS objects in the current web page. Here we are
inspecting the Counter.html example from the PL examples repo.

git@scg.unibe.ch:lectures-pl-examples

Delegation of Messages

counter2.inc();

counter2.val; //=>1

The method inc() is executed in the context of
counter2, the receiver, rather than in counter1, the
object to which the message inc() is delegated!

The key aspect of prototype delegation is that this in
the prototype is bound to the receiver of the original
message.

16

The invocation Object.create(counter1) will create a
new object that has the object counter1 as its prototype. All
requests to counter2 that it does not find in its own dictionary
of properties will be delegated to its prototype.

The key difference between forwarding and delegation is that the
original receiver is remembered in the “this” variable. When
counter2.inc() is evaluated, it is delegated to counter1.
When the inc() function is evaluated, however, this is bound
to counter2 and not counter1, so the correct val property
is updated. With simple forwarding, the object1.val would
be updated instead.

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

17

Constructor Functions

function Counter(name) {

 this.val = 0;

 this.name = name;

}

The operator
new creates an
object and binds
it to this in the
constructor.

By default the
return value is
the new object.

Constructors are functions that are used with the
new operator to create objects

18

var counter3 = new Counter("counter3");

counter3.val; //=>0

counter3.name; //=>”counter3”

Note that simply calling the function will not create a new object.
Worse, it will update properties of this in the current context
(whatever that might be).

Constructor.prototype

Instead of
creating a new
method for
each object,
add one to the
prototype

> All objects created with a constructor share the same prototype

> Each constructor has a prototype property (which is

automatically initialized when defining the function)

19

Counter.prototype.inc = counter1.inc;

Counter.prototype.dec = counter1.dec;

var counter3 = new Counter("counter3");

counter3.inc();

counter3.val; //=>1

Note how the functions inc and dec in counter1 are copied
to the Counter prototype. These functions each make use of a
this variable, which will be bound to any object created using
the Counter constructor.

We also see clearly in this example that functions are object too!
In particular, the Counter function (also a constructor) has a
prototype field, so it is also an object.

Constructor.prototype

20

function ColoredCounter(name, color) {

 this.val = 0;

 this.name = name;

 this.color = color;

 var that = this;

 window.onload = function() {

 document.getElementById(that.name).style.color = that.color;

 };

}

ColoredCounter.prototype = new Counter('x');

var blueCounter = new ColoredCounter('blueCounter', 'Blue');

Counter.prototype

Counter

counter "x"

ColoredCounter

blueCounter

prototype prototype

In this example we reassign the default prototype of
ColoredCounter to be an instance of Counter (counter
“x”). Its prototype, in turn, is that of Counter.

This is a classical prototype chain. Every property that is looked
up in the blueCounter but not found, is delegated to the next
prototype in the chain.

Object Model

NB: This is incomplete.

What are the prototypes
of Object, Counter ... ?

21

Counter.prototype

Counter

counter "x"

ColoredCounter

blueCounter

prototype

Object.prototype

Object

constructor

prototype

constructor

prototype

constructor

counter3

Functions

Prototypes

counter1

counter2

Every object has a prototype. Every prototype is an object, and
any object may also serve as a prototype for another object.

Objects may be created (i) as a literal, (ii) using Object.create(),
or (iii) using a constructor.

Literal objects (e.g., counter1) have Object.prototype as
their prototype.

Objects created with Object.create() have the argument as
their prototype (e.g., counter2 has counter1 as its
prototype).

Objects that are created using a constructor function get their
(initial) prototype from that constructor (e.g., counter3,
counter4).

Predefined Objects

> Global functions: Array, Boolean, Date, Error, Function,
Number, Object, String,... eval, parseInt, ...

> Global objects: Math

22

Extending Predefined Objects

Array.prototype.map = function(f) {

 var array = [];

 for (var n = 0; n < this.length; n++) {

 if (n in this) { array[n] = f(this[n]); };

 };

 return array;

};

[1.7, -3.1, 17].map(Math.floor); //=>[1, -4, 17]

[1.7, -3.1, 17].map(function(x) { return x+1; });

 //=>[2.7, -2.1, 18]

Object.prototype.inspect = function() {

 alert(this);

};

'a string'.inspect();

true.inspect();

(new Date()).inspect();

Extending all objects

Extending arrays

The last object in the
prototype chain of
every object is
Object.prototype

23

Since all objects have Object.prototype at the end of their
prototype chain, one can add properties to all objects simply by
extending that object.

In the first example we define an inspect() method for all
objects that will pop up a browser alert dialog.

In the second example we add a map() function to all JS arrays.

(Hint: you can try these out in the Chrome browser JS console.)

The arguments object

function concat(separator) {

 var result = '';

 for (var i = 1; i < arguments.length; i++)

 result += arguments[i] + separator;

 return result;

};

concat(";", "red", "orange", "blue");

//=>"red;orange;blue;"

arguments object

arguments.callee returns the currently executing function

var f = function() {

 if (!arguments.callee.count) {

 arguments.callee.count = 0; };

 arguments.callee.count++; };

f(); f(); f();

f.count; //=>3

you can call a function
with more arguments
than it is formally
declared to accept

24

In JS you can pass any number of arguments to a function. Those
not declared explicitly as arguments in the function’s definition
can be accessed by the arguments variable.

arguments.callee is the function being called.

NB: the function cannot be accessed using “this” since that
would give the enclosing object!

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

25

Variable Scopes

> The scope of a variable is the region of the program in
which it is defined

> Scopes in JavaScript

—function

—global

—no block-level scope(!)

> Identifier resolution: 
lookup along scope chain

26

var x = 1;

function f() {
var y = 2;

function g() {
var x = 0;
var z = 3;
// x:0,y:2,z:3

}

g();
}

f();

x:1

y:2

x:0
z:3

global

Lexical scope Scope chain

Program languages distinguish between lexical and dynamic scope.
Lexical scope is determined purely by the program source code, while
dynamic scope is determined at run time. Each nested scope may
introduce new names (i.e., variables or functions), which are not
defined outside of that scope. This effectively gives rise to a stack of
scopes, as shown in the diagram. The innermost scope of g() defines
x and z, which are not visible in the enclosing scope of f(). Note
that there is a global x in the outermost scope that is shadowed by the
x within g(). (We also say that the x in g() masks the global x.)

Modern programming languages mostly rely on lexical scoping, as
dynamic scoping makes programs hard to understand. The only
common example of dynamic scoping is exception handlers, which
are set dynamically by a calling scope, affecting dynamically called
inner scopes.

Closures

> Functions are lexically scoped (rather than dynamically).
Functions are executed in the scope in which they are
created, not from which they are called.

> Inner functions are closures

function f(x) {

 var y = 1;

 return function() { return x + y; };

};

closure = f(2);

var y = 99;

closure(); //=>3

When the anonymous
function is created, the
current scope chain is
saved. Hence, the
scope of f(x) continues
to exist even after f(x)
returned.

27

A closure is a function (or an object) together with an
environment that binds the free names within it (i.e., the
environment closes those names).

Here x and y are free in

function() { return x + y; }

but they are both bound in the enclosing environment of f().

When we evaluate

closure = f(2);

we obtain a closure consisting of the anonymous function
together with the environment that binds x to 2 and y to 1.

Defining y to be 99 in the global scope does not affect the
environment of the closure, so evaluating it will yield 3, not 101.

(With dynamic scoping, names would be looked up in the current
scope, not the lexical one.)

Closures

A closure is a function whose free variables
are bound by an associated environment.

28

y:99

x:2
y:1

global

Lexical scope Scope chain

function f(x) {
var y = 1;

return function() {
return x + y;

}

}

closure = f(2);
var y = 99;
closure(); //=>3

Closures and Objects

By default all properties and methods are public.

Using closures, properties and methods can be made private.

var counter4 = (function(name) {

 var val = 0;

 var name = name;

 return {

 inc : function() { val++; update(this); },

 dec : function() { val--; update(this); },

 get val() { return val; },

 get name() { return name; }

 }

})('counter4');

The variables val
and name are only
accessible to
clients via the
exported methods.

29

NB: ECMAScript 5 getters are used
to allow val and name to be
accessed as (immutable) fields.

Although all properties are public by default, we can use the
mechanism of closures to provide a form of information hiding.
The trick is to define a function that returns an object containing
only public properties, but whose methods are closures, with
(private access) to a hidden environment.

This is supported by a JS idiom in which a function, which
defines the private environment within its own lexical scope, is
immediately called, and returns a closure (a literal object) with
access to that environment.

Here an unnamed function defines an environment with the
properties val and name. It is called and returns a literal object
with access to these names, but they are not (public) properties of
the object itself.

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

30

31

Snakes and Ladders (see P2 lecture)

http://en.wikipedia.org/wiki/Snakes_and_ladders

We will reimplement the Snakes and Ladders games from lecture
2 of the P2 OO design course.

http://scg.unibe.ch/teaching/p2

The original design was class-based and implemented in Java.
Here we will adopt a prototype-based design.

See the full source code in the examples repo:

git@scg.unibe.ch:lectures-pl-examples

Or try it out online (with links to source code):

http://scg.unibe.ch/download/lectures/pl-examples/JavaScript/Snakes/snakes.html

32

Assertions and Exceptions

function assert(outcome, message) {

 if (!outcome) {

 postDebugMsg(outcome, message);

 throw new AssertException(message);

 }

}

function postDebugMsg(outcome, message) {

 var debug = document.getElementById('debug');

 var li = document.createElement('li');

 li.className = outcome ? 'pass' : 'fail';

 li.appendChild(document.createTextNode(message));

 debug.appendChild(li);

};

function AssertException(message) { this.message = message; }

AssertException.prototype.toString = function () {

 return 'AssertException: ' + this.message;

}

We will adopt Design by Contract, so we need a way to write
assertions (there wasn't one yet when we wrote this code).

If an assertion fails, we post a message in the debug element of
the current web page.

Closures

33

function makeDisplay(config, player1, player2) {

 var rows = config.rows;

 var cols = config.cols;

 ...

 var canvas = document.getElementById('display');

 var c = canvas.getContext('2d');

 var boardImg = new Image();

 boardImg.src = config.board;

 ...

 function repaint() {

 c.drawImage(boardImg,0,0);

 piece1.draw();

 piece2.draw();

 }

 ...

...

 // only return the public fields

 return {

 repaint: repaint,

 test: test

 }

}

...

display = makeDisplay(config, jack, jill);

The display is fully encapsulated as a closure.

The makeDisplay() constructor returns an object with just
two properties, but the functions these properties are bound to
have access to the lexical context of makeDisplay() holding
further private properties, such as rows, cols, canvas and so
on.

canvas.getContext('2d') will return an object
supporting 2D drawing operations.

Asynchrony

34

 boardImg.onload = function () {

 c.canvas.height = this.naturalHeight;

 c.canvas.width = this.naturalWidth;

 c.drawImage(boardImg,0,0);

 };

 piece1.onload = function () {

 var scale;

 this.dh = rowHeight() / 2;
 scale = this.dh / this.naturalHeight;

 this.dw = this.naturalWidth * scale;

 repaint();

 }

Files are loaded asynchronously
triggering a callback on completion

Both boardImg and piece1 are instances of Image. The
onload() method will be called automatically when the Image
is loaded. Note how the piece auto-adjusts its size.

posn : 1
landHere()
move()
isLastSquare()
enter()
leave()

firstSquare

player : null
landHere()
enter()
leave()

plainSquare

landHere()
ladder

isLastSquare()
lastSquare

Delegation vs Inheritance

35

var firstSquare = {

 posn : 1,

 landHere : function() { return this; },

 ...

 enter : function() {},

 leave : function() {}

}

var plainSquare = Object.create(firstSquare);

plainSquare.player = null;

...

plainSquare.enter = function(player) {

 this.player = player;

}

plainSquare.leave = function() {

 this.player = null;

}

var ladder = Object.create(plainSquare);

ladder.landHere = function() {

 return board.squares

 [this.posn + this.forward].landHere();

}

var lastSquare = Object.create(plainSquare);

lastSquare.isLastSquare = function() {

 return true;

}

In the Java version of the game, we have a class hierarchy of
different kinds of squares.

In JS we have no classes, but instead a delegation chain. The
firstSquare serves as a prototype for a plainSquare, and
so on. Each new kind of square only redefines the methods that
require special handling, for example: the first square does not
care who enters or leaves it, but a plain square must ensure that at
most one player occupies it at a time.

The objects plainSquare and ladder serve as prototypes for
the actual squares of a given board.

36

JSON

{

 "rows" : 3,

 "cols" : 4,

 "board" : "board12.png",

 "piece1" : "blue.png",

 "piece2" : "yellow.png",

 "ladders" : [

 { "posn" : 2, "forward" : 4 },

 { "posn" : 7, "forward" : 2 },

 { "posn" : 11, "forward" : -6 }

]

}

{

 "rows" : 6,

 "cols" : 6,

 "board" : "board36.png",

 "piece1" : "blue.png",

 "piece2" : "yellow.png",

 "ladders" : [

 { "posn" : 3, "forward" : 13 },

 { "posn" : 5, "forward" : 2 },

 { "posn" : 15, "forward" : 10 },

 { "posn" : 18, "forward" : 2 },

 { "posn" : 21, "forward" : 11 },

 { "posn" : 12, "forward" : -10 },

 { "posn" : 14, "forward" : -3 },

 { "posn" : 17, "forward" : -13 },

 { "posn" : 31, "forward" : -12 },

 { "posn" : 35, "forward" : -13 }

]

}JSON is a lightweight standard for

data exchange based on object literals

The configuration is a literal object stored as a JSON (JavaScript
Object Notation) file. It is passed to the newGame() function
using jQuery in the main HTML file:

jQuery.getJSON("board12.json", newGame);

jQuery parses the JSON file, converts it into a literal JS object
and passes it as an argument to newGame().

Interpreting JSON

37

function makeBoard(config) {

 var squares = [];

 ...

 squares[1] = firstSquare;

 for (var i=2;i<=size;i++) {

 square = Object.create(plainSquare);
 squares[i] = square;

 square.posn = i;

 }

 var entry;

 for (i = 0; i<config.ladders.length; i++) {

 entry = config.ladders[i];

 newLadder = Object.create(ladder);

 ...

 }

 ...

 return {

 size : size,

 squares : squares,

 find : find,

 home : home

 }

}

The newGame() function invokes makeBoard() which
interprets the configuration and creates a closure representing the
configured board. Here we see that the plainSquare and
ladder objects are used as prototypes for the squares of the
board. (We directly use firstSquare and lastSquare, as
we only need one of each.)

“Adam’s rib”

38

var jack, jill;

jack = {

 name : 'Jack',

 square : firstSquare,

 move : function(moves) {

 this.square.leave();

 this.square = this.square.move(moves);

 this.piece.posn = this.square.posn;

 this.square.enter(this);

 display.repaint();

 },

 wins : function() {

 return this.square.isLastSquare();

 }

}

jill = Object.create(jack);

jill.name = 'Jill';

jill.square = firstSquare;

Player jack can serve as a prototype for jill, as they have the
same behavior and only different state. Note again how the
pseudo-variable this is correctly resolved in jill to refer to
her state, not jack’s.

The top level

39

var game = {

 player : jack,

 isOver : false,

 swapTurn : function () {

 this.player = (this.player === jack) ? jill : jack;

 },

 move : function () {

 var moves;

 var win = '';

 if (!this.isOver) {

 moves = die.roll();

 this.player.move(moves);

 if (this.player.wins()) {

 win = ' — ' + this.player.name + ' wins!'

 this.isOver = true;

 }

 this.status(this.player.name + ' rolls ' + moves + win);

 this.swapTurn();

 } else {

 this.status('The game is over!');

 }

 },

 status : function(msg) {

 document.getElementById('status').innerHTML=msg;

 }

}

The game object keeps track of the state of the game and
implements the main move() function, which is invoked from
the web interface. The status() function injects feedback
messages into the web page.

The top level

40

<html>

...

<body>

...

<canvas id="display"></canvas>

<ul id="debug">

<script type="text/javascript" src="jquery-1.7.2.min.js"></
script>

<script type="text/javascript" src="snakes.js"></script>

<script type="text/javascript">

jQuery.getJSON("board12.json", newGame);

</script>

<button type="button" onclick="game.move()">move</button>

...

</body>

</html>

function newGame(config) {

 board = makeBoard(config);
 jack.square = firstSquare;

 jill.square = firstSquare;

 game.player = jack;

 game.isOver = false;

 display = makeDisplay(config, jack, jill);
 display.test();

 display.repaint();

}

snakes.html

snakes.js

jQuery is a JS
library to simplify
client-side scripting

The JS implementation resides in the snakes.js file, while the
main web page (snakes.html) includes it, loads the configuration,
and links a button to the game.move() method.

Roadmap

> Class- vs. prototype-based languages

> Objects, properties and methods

> Delegation

> Constructors

> Closures

> Snakes and Ladders with prototypes

> The Good, the Bad and the Ugly

41

The Good

42

> Object literals, JSON

> Object.create()

> Dynamic object extension

> First-class functions

> Closures

These features are used extensively in idiomatic JS code. JSON is
widely used as a human readable format for expressing and
exchanging data objects. It has the advantage of being far more
readable than XML.

Object literals combined with Object.create() offer an
expressive way to create delegation chains. Dynamic object
extension offers a convenient way to incrementally define and
update objects (and prototypes).

First class functions and closures offer a very expressive way to
control visibility of properties.

The Bad (globals)

43

> Global variables

—belong to window
—this may bind to global object

> Undeclared variables are new globals (!)

> No nested block scopes!

Caveat: ES6 fixes some of these, e.g., block scopes.

function ColoredCounter(name, color) {

 this.val = 0;

 this.name = name;

 this.color = color;

 window.onload = function() {

 document.color = this.color;
 };

}

fails miserably

As in all programming languages, globals are evil. In the
example, the ColoredCounter constructor will create a new
object with val, name and color properties. But the
window.onload function will be bound in the context of the
global window object, not the object being created, so it refers to
the global color property, not that of the object being created.
This kind of confusion arises frequently in JS.

Forgetting to declare a variable with var will just cause JS to try
to update it in the enclosing lexical scope. If it is not found, it will
(eventually) silently create it in the global context.

Blocks do not have their own lexical scope, but share that of the
enclosing function. EC6 however fixes this:

https://www.freecodecamp.org/news/5-javascript-bad-parts-that-are-fixed-in-es6-c7c45d44fd81/

The Bad (arrays)

> Arrays are not real arrays [p 105]

—Slow, inefficient

> Function arguments are not arrays [p 31]

—Just objects with a length property

> For-in loops don’t work well with arrays

—Iterates over all properties, not length of array

44

“Arrays” are actually objects, and are not implemented
efficiently. This article explains some of the problems:

http://thecodeship.com/web-development/common-pitfalls-when-working-with-javascript-arrays/

In particular, the typeof operator does not distinguish between
arrays and objects.

The Bad (...)

> Semicolon insertion [p 102]

—Don't rely on it

> Type confusion [p 103]

—typeof returns strange results

> Equality [p 109]

—Doesn't play well with implicit coercion

—Not symmetric!

—Use === instead

> Constructors [p 29]

—Calling without new will give unexpected results!

45

Sometimes JS can insert semi-colons where they are not
welcome. For example, be sure that a return statement is
followed on the same line by the value it returns, otherwise JS
will insert a semi-colon, causing it to return undefined.

The typeof operator says null is an object, not a null.

The == equality operator will try to coerce arguments if they are
not of the same type, possibly leading to strange results. Better
use ===.

Forgetting to call a constructor with new will cause very strange
results. For this reason it is important to follow the convention
that constructors start with an upper-case letter, while functions
that directly return literal objects or closures should not.

The Ugly

46

> No standard for setting the prototype of an object

—__proto__ is browser specific

—No setter in metaprogramming API

> Single prototype chain

—No multiple delegation

> new Object style confuses programming styles

—Simulates class-based programming

—Use Object.create() instead!

Some browsers will let you set the prototype of an object by
updating the __proto__ property, but this is not standard.

The new keyword that lets you create objects from constructors
that simulate classes seems to be an attractive way of translating
class-based designs to JS, but it is really just a hack. The
prototype-based style offers an alternative way of programming
that is very expressive. Use Object.create() instead of new
to stick to this style.

What you should know!

> What is the difference between delegation and
inheritance?

> Which object is modified when changing the value of a
property within a delegated method?

> How do you extend all objects created with a specific
constructor?

> Where do you define properties that are shared between
a group of objects (i.e., static members in Java)?

> How does variable scoping work?

> What is a closure?

47

Can you answer these questions?

> What is the prototype of the global object Function?

> How would you implement private static properties?

48

Which one is “bad” and which is “ugly”?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

