
CallGraph demo
File format:

 |<returnType>:<owner+methodName>:<argType>*
 |<receiverTypeOrStaticMethod>
 |<arguments>
 |<callerWithLineNumber>

Opening files
open a fresh image (set resolution to 1024x768 AND set fonts to MEDIUM)

optionally load Freq

Gofer new
 url: 'http://smalltalkhub.com/mc/spasojev/FrequentlyUsedMethodsPluginForNautilus/main';
 package: 'ConfigurationOfFreQ';
 load.
(Smalltalk at: #ConfigurationOfFreQ) loadDevelopment.

show where the image and changes files are

copy the Calls.txt file to the image folder
open the image; demo the Workspace, Transcript and Inspector

demo “do it”, “print it”, “inspect it” with menu and shortcuts

open an inspector on the file:

FileStream fileNamed: 'Calls.txt'

view the contents in the inspector

System Browser — creating packages and classes
navigate to implementers of fileNamed:

demo the system browser

add the CallGraph package

define the CallGraph class & add a class comment
define the from: initialization method and the calls accessor

display the number of calls in the graph

| cg |
cg := CallGraph new from: (FileStream fileNamed: 'Calls.txt') contents.
cg calls size

define CallGraph class>>fromFile: and simplify the code snippet

Test Cases
now turn it into a test
put a 5-line snippet of the Calls.txt into a class-side example method
write a test CallGraphTest>>testNumberOfCalls
show the test passes both in the system browser and the test runner
show what happens if you break the test

Monticello
save package with Monticello
quickly show Smalltalkhub

Modelings Calls and Methods; Collections
create a Call object for each log line

CallGraph>>from: aString
 calls := (Character cr split: aString)
 collect: [:each | self createCall: each]

introduce the Collection classes (slides)

introduce Booleans

define the createCall: method

CallGraph>>createCall: callString
 | fields callee |
 fields := $| split: callString.
 self assert: fields size = 5.
 self assert: (fields at: 1) size = 0.
 callee := self getMethod: (fields at: 2).
 ^ Call new callee: callee
 "TODO -- handle the remaining fields!"

introduce Call and JMethod classes

initialize methods and define the accessor

CallGraph>>initialize
 methods := Dictionary new

implement getMethod

CallGraph>>getMethod: signature
 | fields methodName |
 fields := $: split: signature.
 methodName := fields at: 2.
 ^ methods at: methodName
 ifAbsentPut: [JMethod new name: methodName]

create the JMethod>>name: and Call>>callee: methods from the debugger

| cg |
cg := CallGraph fromFile: 'Calls.txt'.
cg methods size

Duck Typing
again see that there is an assertion failure — debug to find that not all log lines are valid

CallGraph>>from: aString
 calls := ((Character cr split: aString)
 select: #notEmpty)
 collect: [:each | self createCall: each]

note that symbols also understand value: so can (sometimes) be used in place of blocks

show we can now compute the number of methods

(CallGraph fromFile: 'Calls.txt') methods size. 164

Modeling Classes
create JClass objects for argument and return types

introduce classes Dictionary

(CallGraph fromFile: 'Calls.txt') classes size. -> 30

task 3: number of methods with >0 args query in inspector: 72

task 4: number of methods with >1 args query: 18

MORE TASKS Number of Static methods Potentially Polymorphic methods Polymorphic call sites (methods called w >1 arg
types) Most frequently called method Depth of call graph Root of call graph Methods called from more than 1 caller

Queries

(CallGraph fromFile: 'Calls.txt') calls size. "-> 2475"
(CallGraph fromFile: 'Calls.txt') methods size. "-> 168"
(CallGraph fromFile: 'Calls.txt') classes size. "-> 75"
((CallGraph fromFile: 'Calls.txt') methods select: #isStatic) size. "-> 10"
((CallGraph fromFile: 'Calls.txt') methods select: [:m | m calls size > 1]) size. "-> 141"
((CallGraph fromFile: 'Calls.txt') methods select: #isPolymorphic) size. "-> 10"

TO DO: - owner field (static/class) - actual argument types - caller w line number

