

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics

— Quality Metrics
— Schedule / Cost

> Metric-Based Problem Detection
— Detecting Outliers

— Encoding Design Problems
> Discussion

Measurements

A measurement is a
mapping

domain

range

rules

A measure is a numerical
value or a symbol assigned
during mapping

Estimation of quantity owes
its existence to Measurement
In Software: Calculation to Estimation of

_ : quantity Balancing of
measurements = metrics chances to Calculation
and Victory to Balancing of

chances.

Measurement Scales

Nominal
Ordinal
Interval
Ratio

VvV V V V

T3 3 I ok

)

\ .
1;1 .
el

Estimation of quantity owes
its existence to Measurement
Calculation to Estimation of
quantity Balancing of
chances to Calculation
and Victory to Balancing of
chances.

> Analysis should take
scales into account

Jutlier

Jetection

Medical Markers are
used In diagnositcs
based on statistical
data

> Potassium Levels

> Red Blood Cell Count
> Glucose Levels

> etc.

Google Measures N-gram Frequencies

> What do you do when you want to digitize and report
about 5 million books but can not because of copyright?

Graph these case-sensitive comma-separated phrases: software evolution,software metrics,software quality
between 1950 and 2008 from the corpus English :+ | with smoothingof | 6 3
Search lots of books

B sonware evolution [J] sottware metrics [} software quality

e s et Su—

.
b o Bl m m.--.

. see Bddrues TS boss ot WTHERES. § DTt
B i e A
i T [S o RS LT S S

ARy 3 s Ty
Can you assess e T i et et # e et =
unknown code without

reading it?

Fraser:
One of the problems that is central to the
software production process is to identify the

nature of progress and to find some way of
measuring it.

Mcllroy:

In programming efforts [...] clarity and style
seem to count for nothing — the only thing that
counts 1s whether the program works when put
in place. It seems to me that it is important that

we should impose these types of aesthetic
standards.

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-Based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-Based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

10

Size Measures

LOC
NOM
NOA
NOC
NOP
.. etc.

Lorenz, Kidd, 1994
Chidamber, Kemerer, 1994

11

Cyclomatic Complexity (CYCLO)

The number of '
independent linear paths > < é
through a program.

(Mccabe ’77) f . then If . then ... and .. then or ..then

+ Measures minimum effort C
fOr teSting Do .. W;ile While .. Do Switch

12

Weighted Methods per Class (WMC)

The complexity of a class by
summing the complexity of

its methods, usually using
CYCLDO.

(Chidamber & Kemerer ’94)

+ A proxy for the time and
effort required to maintain a
class

13

Depth of Inheritance Tree (DIT)

The maximum depth level
of a class in a hierarchy.

(B

(Chidamber & Kemerer ’94)

iy

@

+ Inheritance depth is a
good proxy for complexity

=1 [|o~

e

=2

Access To Foreign Data (ATFD)

ATFD counts how many
attributes from other
classes are accessed
directly from a given class.

(Lanza & Marinescu ’06)

+ ATFD summarizes the
interaction of a class with
Its environment

layout
/ay

U
- W /74

weightAndPlaceClasses()

—

ClassDiagramLayouter

é
—
S —

JII] h

1]l

ClassDiagramNode

Initalization

o~

I‘j\\D

] bl

15

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-Based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

16

Coupling Between Object Classes (CBO)

CBO for a class is the
number of other classes to
which it is coupled.

(Chidamber & Kemerer '94)

+ Meant to assess modular | Nt
design and reuse

17

Tight Class Cohesion (TCC)

TCC counts the relative
number of method-pairs
that access attributes of the
class In common.

(Bieman & Kang, 95)

+ Can lead to improvement
action

TCC=2/10=0.2

18

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-Based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

19

Man-Month/Year

The amount of work
performed by an average

developer in a month/year.

C () www.ohloh.net/p/gcc/estimated_cost
hd [Events ZuBe 7 The FWA: Favourite Expertise Survey 1 Universitit Bern - 1+) oil paintings by bla
é%-
«cc. GNU Compiler Collection

RAL Estimated Cost
hry

t

e We calculate the estimated cost of the project using the Basic COCOMO model.
Projects
s Project Cost Calculator
|OPMENT F"::I'“C”d Average Salary
nalysie ode $ 55000 per year

ts Effort (est.)
ited Cost 5,962,319 lines Gpers ;
ients

Estimated Cost
UNITY $ 98,024,632
wtors

20

Function Point (FP)

FP is a unit of measurement
to express the amount of
functionality an information
system provides to a user.

- Risks hiding the internal
functions (algorithms)

21

The Measurement Process

The Goal-Question-Metric model
proposes three steps to finding the
correct metrics.

(Victor Basili)

1) Establish the goals of your maintenance
or development project.

2) Derive, for each goal, questions that
allow you to verity its accomplishment.

3) Find what should be measured in order
to quantify the answer to the questions.

-

Targets without
clear goals will
not achieve their
goals clearly.

~

Principle

22

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

23

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

The Overview Pyramid provides a | anza, Marinescu
metrics overview. 2006

Inheritance

Size Communication

25

The Overview Pyramid provides a
metrics overview.

20.21

9.42

NOC

92.72

0.15
CYCLO

LOC

NOM

NOP

Size

19
384
3618
35175
5579

26

The Overview Pyramid provides a

metrics overview.

3618

1512

NOM

418

CALLS

0.56

8590

FANOUT

Communication

27

The Overview Pyramid provides a
metrics overview.

Inheritance

ANDC 0.31
AHH 0.12

28

The Overview Pyramid provides a
metrics overview.

ANDC 0.31
AHH 0.12
20.21 NOP 19
9.42 NOC 384
9.72 NOM 3618 NOM
0.15 LOC 35175 15128
CYCLO 5579 8590

418
CALLS

0.56
FANOUT

29

The Overview Pyramid provides a
metrics overview.

ANDC 0.31

T o

2021 [Nlelz 19
942 [Nlele 384
CFZI NOM 3618 NOM 418
0.5 [Kele 35175 15128 CALLS 0.56

CYCLO 5579 8590 FANOUT

close to high close to average close to low
30

The Overview Pyramid provides a
metrics overview.

Outlier E

close to high close to average close to low
31

How to obtain the thresholds?

Java C++

LOW AVG HIGH LOW

CYCLO/LOC 0.16 0.20 0.24 0.20 0.25 0.30

LOC/NOM 7 |10 |3 5 |10 |6

NOM/NOC 4 7 |0 4 9 |5

Statistical static analysis of reference systems
Context is important (e.g. programming language)

32

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics
— Quality Metrics
— Schedule / Cost
> Metric-based Problem Detection

— Detecting Outliers
— Encoding Design Problems

> Discussion

Design Problems and Principles

REFACTORING

IMPROVING THE DESIGN
or Existing Copg

’ ‘EMADLED

Bad Smells
Comments
Switch Statement
Shotgun Surgery

Object-Oriented

~|

Design Heuristics
Encapsulation
Minimize Coupling
Class Coherence
Inheritance Depth

Design principles come in prose - how to measure them?

Rarely a single metric is sufficient >>> Detection Strategies

34

Detection Strategies...

.. are metric based queries
for detecting design problems

(Lanza & Marinescu 2002)

Rule 1

(METRIC 1 > Threshold 1)

Rule 2

(METRIC 2 < Threshold 2)

AND -

s

L

L

Quality problem }

is partially

/ has (part]l Feature
Envy uses Class
h/

Bra in
“ Method
| Brai ./ has Significant
Duplication
‘\ / i
is

is | Tradition
Breaker

has (subclass)

Futile
Hierarchy

Identity Collaboration Classification
Disharmonies Disharmonies Disharmonies

35

Shotgun

Surgery has
i
has (partial) | Feature Data
Envy | uses Class
P -, God " is partially
- lntens.ive ; C|ass Braln has
. \Coupling) | has Method l
Significant
: Class Duplication
’ has
is
has

['?af‘r’es:t" | is ‘Tradition
Bequest Breaker

has (subclass)
Futile
Hierarchy

[identity] [Collaboraﬁon] [ClassiﬂcationJ

Disharmonies Disharmonies Disharmonies

God Classes ...

... tend to centralize the intelligence of the system, to
do everything, and to use data from small data-classes

37

God Classes ...

Complexity (WMC)

... tend to centralize the intelligence of the system, to
do everything, and to use data from small data-classes

/

Lack of cohesion (TCC)

Foreign data usage (ATFD)

38

God Classes

Class uses directly more than a
few attributes of other classes

(ATED > FEW)

, R
Functional complexity of the
class is very high AND GodClass J
(WMC = VERY HIGH)
g)
Quantifiers
g — N FEW
Class cohesion is low MANY
TOP
(TCC < ONE THIRD)) HIGH
\
ONE THIRD ...

39

Data Classes are dumb data holders

7

Interface of class reveals data
rather than offering services

| (WOC < ONE THIRD) |

T — — — —

-)
Class reveals many attributes and is

AND Data Class J

not complex I

WOC - Weight Of a Class

Definition

The number of “functional” public methods divided by the total number of
public members (Mar02a)

40

Data Classes are dumb data holders

I Class reveals many
——: attributes and is not
0 complex

T S S ——————

NOAP = #Public Attributes,
NOAM = #Accessor Methods

F ——————————

41

Feature Envy is ...

This one you find in the Lanza-
Marinescu Book!

42

Roadmap

> Measurements

> Software Metrics
— Size / Complexity Metrics

— Quality Metrics
— Schedule / Cost

> Metric-based Problem Detection
— Detecting Outliers
— Encoding Design Problems

> Discussion

McClure:

I know of one organisation that attempts to
apply time and motion standards to the output of
programmers. They judge a programmer by the
amount of code he produces. This 1s guaranteed
to produce insipid code — code which does the
right thing but which is twice as long as
necessary.

Source Anchor

element: SourcedEntity -> sourceAnchor

FAMIX 3.0

SourcedEntity

> Meta-model
> Core - independent of e o g

programming language
> Implemented in Moose

NamedEntity

sFinal: Boolean

jsProtected: Boolean

hame: String

jsPackage: Boolean

jsAbstract: Boolean

jsPrivate: Boolean

jsPublic: Boolean

fbelongsTo: ContainerEntity

modifiers: String*

jsStub: Boolean

parentPackage: Package -> childNamedEntities
freceivinginvocations: Invocation* -> receiver

l | SourcedEntity
urceAnchor: SourceAnchor -> element}
comments: Comment* -> container

Comment

—fgontent: String)
container: SourcedEntity -> comments

randidates: Be

_feceiver: Name
ignature: Strin
eiverSource
Ei(nder: Behavi

-

Associaton - SWrite: Boolea
ynext: Association -> previous ,_hsnead: Booles

—previous: Association -> next |- pccessor: Beha

yffrom: NamedEntity) .
jto: NamedEntity s Struc!

ource: Contair
Farget: Contain

—

| Ink
~Eubclass: Ty
uperclass: Typ

nti

SourcedEnti

—fourceAnchor: SourceAnchor -> element
co

mments: Comment* -> container

—fontent: String

ame: String
sPackage: Boolean
sAbstract: Boolean
sPrivate: Boolean
Public: Boolean
elongsTo: ContainerEntity
odifiers: String*
sStub: Boolean) N
rentPackage: Package -> childNamedEntities
receivinginvocations: Invocation* -> receiver

Comment

container: SourcedEntity -> comments

ContainerEntity |
EincomingR?ferences: Reference* -> tar

pes: Type* -> container
outgoingReferences: Reference* -> sou

Invocation

candidates: BehaviouralEntity* -> incominginvocations
_Feceiver: NamedEntity -> receivinginvocations
ignature: Strin

eiverSourceCode: String) .
ender: BehaviouralEntity -> outgoinginvocations
— Access
Associavion . sWrite: Boolean
nexg: ASSOClat“?n '°> previous L_ isRead: Boolean
-previous: Association -> next | becessor: BehaviouralEntity -> accesses
rom: NamedEntity ariable: StructuralEntity -> incomingAccesses
o: NamedEntity
Reference
ource: Containerentity -> outgoingReferences
Farget: ContainerEntity -> incomingReferences

Inhentance

LEub(:la:t.:r.: Ty

uperclass: Type -> sublnheritances

-> superinheritances

amedEntity

in

erEntity

ckage -> childNamedEntities
ns: Invocation* -> receiver

ment

Entity -> comments

ImplicitVanable
~ kontainer: Type

Attribute

asClassScope: Boolean
parentType: Type -> attributes

StructuralEntity

Parameter

declaredType: Type

fincomingAccesses: Access* -> variable

| parentBehaviouralEntity: BehaviouralEntity -> parameters

GlobalVarable

- parentScope: ScopingEntity -> globalVariables

nknownVanable

Localvariable

~ parentBehaviouralEntity: BehaviouralEntity -> localVariables

ContainerEntity

pes: Type* -> container
outgoingReferences: Reference* -> source

»_Fr;comingReferences: Reference* -> target|

Invocation

Candidates: BehaviouralEntity* -> incominginvocations
receiver: NamedEntity -> receivinglnvocations

- pignature: Stri:g _
eiverSourceCode: String) _
ender: BehaviouralEntity -> outgoinginvocations

Access

L1 E—— jsWrite: Boolean
> previous —[lsRead: Boolean
A -ssnavyk?i . oL ot e e _ ___ _Ame _ala _

_fsu

| BehaviouralEntity

i Functign

localVariables: LocalVaniable® -> parentBehaviouralentity| |
incominglnvocations: Invocation* -> candidates |

parentscope: Scopingentity -> fu

- outgoinglnsvocations: Invocation* -> sender N Method
ignature: String L] :
accesses: Access* -> accessor asClassch - Booleanthod
eclaredType: Type parentType: Type -> me S
parameters: Parameter* -> parentBehaviouralEntity
ScopingEntity _ﬁameggace
- fchildScopes: ScopingEntity* -> parentScope
- rflllngtlf)ns Fg'ﬂct'OT‘b->' paregltSCOpe — Package #
- 2 * - — — v .
Lga?e:t:\slcag:e: esi:'o?yig ggt:,t?tr;/aoechﬂ)d ;:l;;Scope childNamedEntities: NamedEntity* -> par

Type

Class

ymethods: Method* -> parentType
rinheritances: Inheritance* -> subclass
fsubinheritances: Inheritance* -> superclass
container: Containerkntity -> types
fattributes: Attribute* -> parentType

~Jsinterface: Boolean
. YisAbstract: Boolean

PrimitiveType

amedEntity

in

1erEntity

“kage -> childNamedEntities
ns: Invocation* -> receiver

ment

Entity -> comments

ImplicitvVarniable
container: Type

Attribute

asClassScope: Boolean
parentType: Type -> attributes

StructuralEntity

Parameter

_LeafEntity

declar

pe: Type

incomingAccesses: Access* -> variable}

parentBehaviouralEntity: BehaviouralEntity -> parameters

GlobalVanable

parentScope: ScopingEntity -> globalvariables

_MUnknownVanable

Localvariable

_parentBehaviouralEntity: BehaviouralEntity -> localVariables |

BehaviouralEntity

Function |

fincominginvocations: Invocation* -> candidates

_Joutgoinginvocations: Invocation* -> sender

ignature: String
accesses: Access* -> accessor
eclaredType: Type

parameters: Parameter* -> parentBehaviouralEntity

flocalVariables: LocalVanable* -> parentBehaviouralEntity

' parentScope: ScopingEntity -> fu

Method

—hasClassScope: Boolean
parentType: Type -> methods

ContainerEntity

__[incomingReferences: Reference* -> target
pes: Type* -> container
outgoingReferences: Reference* -> source

ScopingEntity

_Namespace

- fchildScopes: ScopingEntity* -> parentScope
—yfunctions: Function* -> parentScope -
/globalVariables: GlobalVariable* -> parentScope

parentScope: ScopingEntity -> childScopes

Package |
~ychildNamedEntities: NamedEntity* -> par

Type

Class

/methods: Method® -> parentlype
fsuperinheritances: Inheritance* -> subclass

sinterface: Boolean
fisAbstract: Boolean

fsubinheritances: Inheritance* -> superclass

container: Containerentity -> types

el T e S e e]

Invocation

Candidates: BehaviouralEntity* -> incominginvocations
receiver: NamedEntity -> receivinginvocations

- pignature: Stri:g _
eiverSourceCode: String))
ender: BehaviouralEntity -> outgoinginvocations

Access

n
> previous

jswrite: Boolean

A - Nnayhk ;—(P['§B?_a_d_:_‘ano\o.ll_e_a.r.‘:-..__u—_;;g. -

_PrimitiveType

jattributes: Attribute* -> parentType

What you should know!

> Software metrics are measurements
> Every scale allows certain operations and analyses

> Detection strategies are queries for design problem
detection

> The Goal Question Metric model has three phases
> Bad smells encode bad OO practices
> Design heuristics encode good OO practices

50

Can you answer these questions?

> How do you compute TCC for a given class?

> Can you explain how the God Class detection strategy
WOrks?

> Can you list several of the elements of the FAMIX meta-
model?

> What are three metrics appropriate for OO systems but
not be appropriate for procedural systems?

> Can you give examples of three bad smells?
> Why are comments a bad smell? But switch clauses?
> Can you give examples of three design heuristics?

51

Further Reading

> Cohesion and Reuse in Object Oriented Systems, by
Bieman & Kang

> OOMIP by Lanza and Marinescu (Sections 5.3 - 5.5)
> http://sourcemaking.com/refactoring/bad-smells-in-code
> http://scg.unibe.ch/staff/mircea/sde/60-design-heuristics

52

http://sourcemaking.com/refactoring
http://scg.unibe.ch/staff/mircea/sde/60-design-heuristics

@creative
commons

COMMO N S D E E D

Attribution-ShareAlike 3.0
You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.orqg/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/2.5/

