
Nevena Milojković

Software Design and Evolution

10. Dynamic Analysis

Based on the slides of Jorge Ressia

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic Analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

Roadmap

2

Roadmap

3

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

What does this class do?

package org.jhotdraw.standard;public class CreationTool
extends AbstractTool {private List fAddedFigures;private
Figure fCreatedFigure; private Figure myAddedFigure; private
Figure myPrototypeFigure; public CreationTool(DrawingEditor
newDrawingEditor, Figure prototype) {super(newDrawingEditor);
setPrototypeFigure(prototype);} protected CreationTool
(DrawingEditor newDrawingEditor) {this(newDrawingEditor,
null);} public void activate() {super.activate(); if
(isUsable()) {getActiveView().setCursor(new AWTCursor
(java.awt.Cursor.CROSSHAIR_CURSOR)); setAddedFigures
(CollectionsFactory.current().createList());}public void
deactivate() {setCreatedFigure(null); setAddedFigure(null);
setAddedFigures(null); super.deactivate();} public void
mouseDown(MouseEvent e, int x, int y) {super.mouseDown(e, x,
y); setCreatedFigure(createFigure()); setAddedFigure
(getActiveView().add(getCreatedFigure()));
getAddedFigure().displayBox(new Point(getAnchorX(),
getAnchorY()), new Point(getAnchorX(), getAnchorY()));}
protected Figure createFigure() {if (getPrototypeFigure() ==
null) {throw new JHotDrawRuntimeException("No protoype
defined");}return (Figure)getPrototypeFigure().clone();}}

CreationTool class from JHotDraw system
4

public abstract class AbstractFigure implements Figure {

private transient FigureChangeListener fListener;
private List myDependendFigures;
private static final long serialVersionUID = -10857585979273442L;
private int abstractFigureSerializedDataVersion = 1;
private int _nZ;

protected AbstractFigure() {
 myDependendFigures = CollectionsFactory.current().createList();

}

public void moveBy(int dx, int dy) {
willChange();
basicMoveBy(dx, dy);
changed();

}

protected abstract void basicMoveBy(int dx, int dy);

public void displayBox(Point origin, Point corner) {
willChange();
basicDisplayBox(origin, corner);
changed();

}

public abstract void basicDisplayBox(Point origin, Point corner);

public abstract Rectangle displayBox();

public abstract HandleEnumeration handles();

public FigureEnumeration figures() {
return FigureEnumerator.getEmptyEnumeration();

} …}

What does this class do?

Finding Features

Software Feature:
A distinguishing characteristic of a
software item.

IEEE 829
6

Finding Features

7

What is Dynamic Analysis?

Dynamic analysis is the investigation
of the properties of a software system
during run-time.

8

Static analysis examines the program
code alone.

12.

Properties of a software system are
represented by the system behaviour

System behaviour is established
by methods

12.

Why is static analysis
not enough?

UML example from JHotDraw

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

+basicDisplayBox
(origin:Point,
corner:Point)

GraphicalComposite
Figure

CompositeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

GroupFigure
+basicDisplayBox
(origin:Point,
corner:Point)

PertFigure
+basicDisplayBox
(origin:Point,
corner:Point)

StandardDrawing

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

Different static analysis techniques

CHA
RTA
CTA
MTA
FTA
XTA
k-CFA

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

Symbolic execution

> Assigning the symbolic values to the
variables, rather than concrete

> Executing the program with symbolic
values, and figuring out which value
causes which program path to execute

CHA algorithm

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

+basicDisplayBox
(origin:Point,
corner:Point)

GraphicalComposite
Figure

CompositeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

GroupFigure
+basicDisplayBox
(origin:Point,
corner:Point)

PertFigure
+basicDisplayBox
(origin:Point,
corner:Point)

StandardDrawing

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

CHA algorithm

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

+basicDisplayBox
(origin:Point,
corner:Point)

GraphicalComposite
Figure

CompositeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

GroupFigure
+basicDisplayBox
(origin:Point,
corner:Point)

PertFigure
+basicDisplayBox
(origin:Point,
corner:Point)

StandardDrawing

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

RTA algorithm

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

+basicDisplayBox
(origin:Point,
corner:Point)

GraphicalComposite
Figure

CompositeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

GroupFigure
+basicDisplayBox
(origin:Point,
corner:Point)

PertFigure
+basicDisplayBox
(origin:Point,
corner:Point)

StandardDrawing

RTA algorithm

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

+basicDisplayBox
(origin:Point,
corner:Point)

GraphicalComposite
Figure

CompositeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

GroupFigure
+basicDisplayBox
(origin:Point,
corner:Point)

PertFigure
+basicDisplayBox
(origin:Point,
corner:Point)

StandardDrawing

new TextAreaFigure();
new GroupFigure();
…
Figure f = fe.nextFigure();
f.basicDisplayBox(partOrigin, corner);

Why Dynamic Analysis?

Gap between run-time structure and code structure in OO
programs

Trying to understand one [structure] from the other is like
trying to understand the dynamism of living ecosystems
from the static taxonomy of plants and animals, and vice-
versa.

— Erich Gamma et al., Design Patterns
18

Application

> Software understanding
> Software testing

Roadmap

20

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

Runtime Information Sources

> tracing method execution
> tracing values of variables
> tracing memory usage

21

Two ways of getting the information

> External
—execute program and collect the information from

outside
> Internal

—instrument program, and get the information from
inside

22

External View

> System.out.println

> Examine logs

> Analyse used resources
> CPU and memory usage
> Open files

23

Internal View

Log statements
in code Stack trace

Debugger

Many different tools are based on tracing: execution profilers,
test coverage analysers, tools for reverse engineering…

Execution trace

24

Execution Tracing

How can we capture full program
execution?

25

Trace entry and exit of
methods

Additional information:
- receiver and arguments
- return values
- fields assigning
- class instantiations

Tracing Techniques

• Instrumentation approaches
—Source code modification
—Byte code modification
—Wrapping methods (Smalltalk)

• Simulate execution (using debugger infrastructure)

26

Technical Challenges

> Instrumentation influences the behaviour of the
> execution

> Overhead: increased execution time
> Large amount of data

27

Roadmap

28

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

Feature Analysis

29

Loggers - low tech debugging

“…debugging statements stay with the program;
debugging sessions are transient. “

 Kerningham and Pike

public class Main {  

public static void main(String[] args) {
Clingon anAlien = new Clingon();
System.out.println(“in main“);
anAlien.spendLife();
}

}

30

Smalltalk Mechanisms

> become: function
> Method Wrappers
> Anonymous Classes

31

become: function

• primitive function
• swaps the object pointers of the receiver and the
argument and all variables in the system that used to
point to the receiver now point to the argument, and
vice-versa.

Method Wrappers

A MethodWrapper replaces an original CompiledMethod
in the method dictionary of a class and wraps it by
performing some before and after actions.

Anonymous Classes

To intercept the behaviour of the object, we need to
create an anonymous subclass of its class and override a
method whose behaviour we want to inspect.

Sub-method Feature Analysis

35

Sub-method Feature Analysis

Bytecode Instrumentation

36

Bytecode Instrumentation

Smalltalk

37

> Smalltalk code:

> Symbolic Bytecode

Example: Number>>asInteger

Number>>asInteger
"Answer an Integer nearest
the receiver toward zero."

^self truncated

9 <70> self
10 <D0> send: truncated
11 <7C> returnTop

38

Example: Step by Step

> 9 <70> self
—The receiver (self) is pushed on the stack

> 10 <D0> send: truncated
—Bytecode 208: send literal selector 1
—Get the selector from the first literal
—Start message lookup in the class of the object that is on

top of the stack
—result is pushed on the stack

> 11 <7C> returnTop
—return the object on top of the stack to the calling method

39

Reflectivity

> Reflectivity is a tool to annotate AST nodes with
metalinks.

> A metalink is a message sent to an arbitrary object.

> A metalink can be executed before a node, instead a
node, after a node.

http://smalltalkhub.com/#!/~RMoD/Reflectivity

http://smalltalkhub.com/#!/~RMoD/Reflectivity

ByteSurgeon

> Enables runtime bytecode transformations for Smalltalk
> Provides high-level API
> Complements the reflective ability of Smalltalk with the

possibility to instrument method

> Runtime transformation needed for
—Adaptation of running systems
—Tracing / debugging

41

Example: Logging

> Goal: logging message send.
> First way: Just edit the text:

42

Logging with ByteSurgeon

> Goal: Change the method without changing program text
> Example:

43

Logging: Step by Step

44

Logging: Step by Step

> instrumentSend:
—takes a block as an argument
—evaluates it for all send bytecodes

45

Logging: Step by Step

> The block has one parameter: send
> It is executed for each send bytecode in the method

46

Logging: Step by Step

> Objects describing bytecode understand how to insert
code
—insertBefor
—insertAfter
—replace

47

Logging: Step by Step

> The code to be inserted.
> Double quoting for string inside string

– Transcript show: ’sending #test’

48

ByteSurgeon Usage

> On Methods or Classes:

> Different instrument methods:
—instrument:
—instrumentSend:
—instrumentTempVarRead:
—instrumentTempVarStore:
—instrumentTempVarAccess:
—same for InstVar

49

Advanced ByteSurgeon

> Goal: extend a send with after logging

50

Advanced ByteSurgeon

> With ByteSurgeon, something like:

> How can we access the receiver of the send?
> Solution: Metavariable

51

Advanced ByteSurgeon

> With Bytesurgeon, something like:

> How can we access the receiver of the send?
> Solution: Metavariable

52

Bytecode Instrumentation

Java

53

Bytecode Manipulation

> Java
—Javassist

– high-level API
—ASM

– working on low-level

54

Javassist

class Point {
 int x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
}

55

Javassist

ClassPool pool = ClassPool.getDefault();
CtClass cc = pool.get("Point");
CtMethod m = cc.getDeclaredMethod("move");
m.insertBefore("{ System.out.println($1);
System.out.println($2); }");
cc.writeFile();

56

Javassist

class Point {
 int x, y;
 void move(int dx, int dy) {
 { System.out.println(dx); System.out.println(dy); }
 x += dx; y += dy;
 }
}

57

Javassist - Edit Body

CtMethod cm = ... ;
cm.instrument(
 new ExprEditor() {
 public void edit(MethodCall m)
 throws CannotCompileException
 {
 if (m.getClassName().equals("Point")
 && m.getMethodName().equals("move"))
 m.replace("{ $1 = 0; $_ = $proceed($$); }");
 }
 });

58

Roadmap

59

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

Reverse Engineering

Rev
ers

e E
ng

ine
eri

ng
static view

+

execution traces dynamic view

+ Dynamic Analysis

60

Dynamic Analysis for Program
Comprehension

> Frequency Analysis [Ball, Zaidman]

> Runtime Coupling Metrics based on Web mining
techniques to detect key classes in a trace
[Zaidman 2005]

> Recovering high-level views from runtime data
[Richner and Ducasse 1999]

61

Visualization of Runtime Behaviour

[JinSight, De Pauw 1993] 62

Dividing a trace into features

Feature 1 Feature 2 Feature n

63

Feature Identification is a technique to
map features to source code.

“A feature is an observable unit of behaviour of a system
triggered by the user” [Eisenbarth etal. 2003]

64

Feature-Centric Analysis: 
3 Complementary Perspectives

F1

F3

F2

F4

F5

Features Perspective

Features Relationships
Perspective

Classes
Perspective

65

Object Flow Analysis

Method execution traces do not
reveal how
… objects refer to each other
… object references evolve

Trace and analyse object flow
—Detect object dependencies

between features

66

Roadmap

67

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

> Augment the notion of developers with run-time
information

> Traditional IDEs lack information about sometimes purely
dynamic relationship between source code artefacts

> The lack of the dynamic type of the receiver is one of the
biggest obstacles in program comprehension

Hermion

> integrates dynamic information directly in the source
code

> augments the static source code with type information for
variables

> shows which methods get invoked at particular call sites
in source code

> aggregates its dynamic information over different runs

http://scg.unibe.ch/archive/reports/Roet08dHermion.pdf

http://scg.unibe.ch/archive/reports/Roet08dHermion.pdf

Hermion

Senseo

http://scg.unibe.ch/archive/papers/Roet09cSenseo.pdf

http://scg.unibe.ch/archive/papers/Roet09cSenseo.pdf

Roadmap

72

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> The Purpose of Dynamic Analysis
> Conclusion

Dynamic vs. Static Analysis

Static analyses extract properties that hold for all
possible program runs

Dynamic analysis provides more precise information
 …but only for the execution under consideration

Dynamic analysis cannot show that a program satisfies
a particular property, but can detect violations of the
property

73

Conclusions: Pros and Cons

Dependent on input
—Advantage: Input or features can be directly related to
execution
—Disadvantage: May fail to exercise certain important paths and
poor choice of input may be unrepresentative

Broad scope: dynamic analyses follow long paths and may discover
semantic dependencies between program entities widely separated
in space and time

However, understanding dynamic behaviour of OO systems is
difficult

Large number of executed methods
Execution paths crosscut abstraction layers

74

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

