
Growing an ecosystem
on the Java platform

Iulian Dragos
Typesafe Inc

The Premise

Ecosystems flourish on stable grounds

The Promise

• Software composes well

• Pick off-the-shelf (open
source) components

• Glue them together

• Profit

The reality

It is hard to pick the right libraries that work
together.

Abstraction

• Stable interfaces

• Pluggable implementations

Stable interfaces

• An interface specifies a contract

• names, method signatures, etc.

• It can be automatically checked in a typed language

class TextFile {
 def readText(file: File): String
}

Binary Compatibility: One can simply swap
one compiled binary library for another

Stable Interfaces

class TextFile {
 def readText(file: File): String
}

Stable Interfaces

• They evolve (so they are not stable)

class TextFile {
 def readText(file: File, encoding: String): String
}

Stable Interfaces

• They are stable within a version

• The problem now becomes “finding a configuration
of libraries and their versions that work together”

• DLL Hell, Jar Hell

Dependency resolution
(more software)

Dependency resolution

• Linux: apt-get, rpm (user-level) or autotools (dev side)

• Mac OS (homebrew, fink, etc.)

• Maven, Ivy for Java developers

• OSGi

Dependency resolution

• Allow upgrades/downgrades of individual libraries
without ripple effects (i.e. human intervention)

• Use versions (or version ranges) to derive constraints

Semantic Versioning

• patch: drop-in replacement (binary compatible)

• minor: additional APIs (binary compatible)

• major: breaking changes

What is versioned?

Maven/Ivy OSGi

Granularity Artifact (Jar) Bundle (Jar)
Package

Namespace GroupID
+ArtifactID

Fully Qualified
Name

Example:

 <dependency>
 <groupId>org.apache.lucene</groupId>
 <artifactId>lucene-core</artifactId>
 <version>4.1.0</version>
 </dependency>

Require-Bundle:
 org.eclipse.core.runtime,
 org.scala-lang.scala-library;bundle-version="[2.11,2.12)"

Resolution

• The tool selects a version for each dependency

• May fail to find a workable configuration

HTTP-lib

SMTP-lib

TCP-libMyApp

1.0.0

1.1.0

3.1.2

3.1.3

A typical application has >200 libraries!

Multiple inheritance

• Libraries are used through different dependency
chains

• Sometimes with different versions

• resolution picks a compatible version based on

• semantic versioning (OSGi)

• distance — nearest-wins (Maven)

OSGi platform

• Resolution happens at runtime (wiring)

• Allows different versions of the same library (side-by-
side)

• avoids conflicts using classloader isolation

• “communication” only through shared classes (for
example, JDK objects)

Java Runtime
• Everyone depends on the JRE (standard library)

• JDK has very strict binary compatibility guarantees.
That’s why Java is still version 1.8!

• ..and probably there won’t be a Java 2.0 ever

• Ensures Java upgrades don’t require a rebuild of the
whole ecosystem

• (also, deprecated methods can never be removed)

The Scala Ecosystem

Scala ecosystem

• open-source

• decentralized

• following Functional Programming principles

• lots of small libraries

• focus on composition

Binary compatibility

• Micro version is binary compatible

• 2.11.0 —> 2.11.1 is a drop-in replacement

• Minor version is not binary compatible

• 2.8.0 —> 2.9.0 requires rebuild of ecosystem

• Major version (epoch) is reserved for breaking
language changes

Binary compatibility

• A given library can work with only one Scala major
version

• ..therefore a Scala version (2.10) determines a
partition of the ecosystem

• ..an organization has to standardize on such a
version

More constraints
• Given a library, how do you know the Scala version it works with?

• 1st try: semantic versioning

• version 1.0-1.99 works with 2.10

• version 2.0-2.99 works with 2.11 etc.

• Downsides:

• each library may have a different base version

• a given version works with only one Scala version

Cross Compilation

• Let’s encode that in the name

• scalatest_2.10 v. 1.0

• scalatest_2.11 v. 1.0

• A library can be cross-compiled to many different
Scala versions

• Uniform convention for all libraries

Major releases

• A Scala major release is a big thing

• happens every 1.5 years

• requires everyone to rebuild their code

• No cycles in the dependency graph!

Major releases

• What about unit testing frameworks?

• everyone depends on them

• they might depend on other libraries

• hence a cycle is formed!

Dependency scoping
• Solution: Dependency scope

• one set of dependencies for runtime

• another set of dependencies for testing

• This way we can bootstrap the ecosystem in three steps

• build/publish without test

• build testing frameworks

• rebuild/publish with tests

Upgrades

• Upgrading to a new major version (2.10—> 2.11)
requires a transaction

• All projects that interoperate have to move together
to the new version

Micro Services

There will be no other form of inter-process communication
allowed: no direct linking, no direct reads of another team’s

data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service

interface calls over the network.

Anyone who doesn’t do this will be fired. Thank you; have a
nice day!

Jeff Bezos, Amazon

Micro services

• Decouple using lightweight HTTP servers

• Serialize to JSON (XML, proto buffers, etc)

• Services can evolve independently

Micro services

• There are also interfaces

• So need versioning

• but not statically checked :(

• Less coupling (no leaks of transitive dependencies)

Lessons learned

• Java has set a very high standard for BC

• People don’t like to rebuild their libraries

• ..but also don’t like broken APIs

• Minimize breaking changes (deprecated methods stay
in for 2 major releases — 3 years cycle)

Summary

• Dealing with dependencies is hard

• Version numbers are important

• Many solutions (Maven, apt, OSGi, microservices)

