
Oscar Nierstrasz

Software Design and Evolution

1. Introduction

Tuesday, September 20, 11

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

2

Tuesday, September 20, 11

SDE

Lecturers Oscar Nierstrasz, Mircea Lungu

Assistants Jorge Ressia

Lectures IWI 001, Wednesdays @ 10h15-12h00

Exercises IWI 001, Wednesdays @ 12h00-13h00

WWW scg.unibe.ch/teaching/sde/

3

Tuesday, September 20, 11

http://www.iam.unibe.ch/~scg/Teaching/OORPT/
http://www.iam.unibe.ch/~scg/Teaching/OORPT/

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

4

Tuesday, September 20, 11

Goals of this course

Understanding:
> how and why software evolves
> reflection and metaprogramming
> how to analyze evolving software
> how to enable graceful software evolution

5

Tuesday, September 20, 11

Course Schedule (tentative)
Week Date Lesson
1 21-Sep-11 Introduction to Software Design and Evolution
2 28-Sep-11 Smalltalk: A Reflective Language and System
3 5-Oct-11 Understanding Classes and Metaclasses
4 12-Oct-11 Reflection and Metaprogramming
5 19-Oct-11 Model-driven Development / Magritte (Lukas Renggli)
6 26-Oct-11 Software Assessment (Tudor Girba)
7 2-Nov-11 LAB: analyzing systems with Moose
8 9-Nov-11 Reverse Engineering and Architectural Extraction
9 16-Nov-11 Metrics and Problem Detection
10 23-Nov-11 Dynamic Analysis
11 30-Nov-11 Mining Software Repositories
12 7-Dec-11 Software Visualization
13 14-Dec-11 Software Ecosystems
14 21-Dec-11 Final exam

6

Tuesday, September 20, 11

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

7

Tuesday, September 20, 11

What is a Legacy System ?

“legacy”
! A sum of money, or a specified article, given to another by will;

anything handed down by an ancestor or predecessor.!
— Oxford English Dictionary

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a
piece of software that:

• you have inherited, and
• is valuable to you

Typical problems with legacy systems:
• original developers not available
• outdated development methods used
• extensive patches and modifications
have been made

• missing or outdated documentation

8

Tuesday, September 20, 11

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance Effort
Between 50% and 75% of

global effort is spent on
“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering?
• Better software methods & tools

(database schemas, CASE-tools, objects,
components, …)?

9

Tuesday, September 20, 11

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
⇒ even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

10

Tuesday, September 20, 11

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several
“laws” of system change.

Continuing change
> A program that is used in a real-world environment must change, or

become progressively less useful in that environment.

Increasing complexity
> As a program evolves, it becomes more complex, and extra resources

are needed to preserve and simplify its structure.

Those laws are still applicable…

11

Tuesday, September 20, 11

What about Objects ?

Object-oriented legacy systems
> = successful OO systems whose architecture and design no longer

responds to changing requirements

Compared to traditional legacy systems
> The symptoms and the source of the problems are the same
> The technical details and solutions may differ

OO techniques promise better
> flexibility,
> reusability,
> maintainability
> …

⇒ they do not come for free

12

Tuesday, September 20, 11

What about Components ?

Components can be very brittle …
After a while one inevitably resorts to glue :-)

13

Tuesday, September 20, 11

(*) process-oriented structured methods, information engineering,
data-oriented methods, prototyping, CASE-tools – not OO !

Contradiction ?! No!
•modern methods make it easier to change
... this capacity is used to enhance functionality!

Modern Methods & Tools ?

[Glas98a] quoting empirical study from Sasa Dekleva (1992)
> Modern methods(*) lead to more reliable software
> Modern methods lead to less frequent software repair
> and ...
> Modern methods lead to more total maintenance time

14

Tuesday, September 20, 11

How to deal with Legacy ?

New or changing requirements will gradually degrade original design
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in ?

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

First …
• refactor
• restructure
• reengineer

Take a loan on your software
⇒ pay back via reengineering

Investment for the future
⇒ paid back during maintenance

15

Tuesday, September 20, 11

Common Symptoms

Lack of Knowledge
> obsolete or no documentation
> departure of the original

developers or users
> disappearance of inside

knowledge about the system
> limited understanding of entire

system
! ⇒ missing tests

Process symptoms
> too long to turn things over to

production
> need for constant bug fixes
> maintenance dependencies
> difficulties separating products
! ⇒ simple changes take too

long

Code symptoms
• duplicated code
• code smells
! ⇒ big build times

16

Tuesday, September 20, 11

Common Problems

Architectural Problems
> insufficient documentation

= non-existent or out-of-date
> improper layering

= too few or too many layers
> lack of modularity

= strong coupling
> duplicated code

= copy, paste & edit code
> duplicated functionality

= similar functionality
 by separate teams

Refactoring opportunities
> misuse of inheritance

= code reuse vs polymorphism
> missing inheritance

= duplication, case-statements
> misplaced operations

= operations outside classes
> violation of encapsulation

= type-casting; C++ "friends"
> class abuse

= classes as namespaces

17

Tuesday, September 20, 11

How to cope with evolution?

> Need to assess evolution
> Need to analyze software and running systems
> Need to adapt evolving software systems
> Need to enable evolution, also at runtime

18

Tuesday, September 20, 11

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

19

Tuesday, September 20, 11

What is a model?

This slide intentionally left blank

20

Tuesday, September 20, 11

What is a meta-model?

This slide intentionally left blank

21

Tuesday, September 20, 11

Example from databases

Model

System

Meta-model

Meta-meta-model Relational data model:
Tables, attributes, tuples

Database schema:
Student, Course, Enrolment …

Database tables of tuples:
(andreas, muster, 07-123-123), …

«represented-by»

«instance-of»

«instance-of»

22

Real world:
You, MMS, …

Tuesday, September 20, 11

Metaprogramming

23

A metaprogram is a program that
manipulates a program (possibly itself)

Tuesday, September 20, 11

Reflection

> “Reflection is the ability of a program to manipulate as data
something representing the state of the program during its
own execution.

> Introspection is the ability for a program to observe and
therefore reason about its own state.

> Intercession is the ability for a program to modify its own
execution state or alter its own interpretation or meaning.

! Both aspects require a mechanism for encoding execution state
as data: this is called reification.”

— Bobrow, Gabriel & White, “CLOS in Context”, 1993

24

Tuesday, September 20, 11

Object

Reflection and Reification

Metamodel

Model

«instance of»

«reification»

«introspection»
(“reflection”)

«intercession»
(reflection)

«modification»

Object class
anObject

25

Tuesday, September 20, 11

Causal connection

> “A system having itself as application domain and that is
causally connected with this domain can be qualified as a
reflective system”

— Maes, OOPSLA 1987

—A reflective system has an internal representation of itself.
—A reflective system is able to act on itself with the ensurance that its

representation will be causally connected (up to date).
—A reflective system has some static capacity of self-representation and

dynamic self-modification in constant synchronization

26

Tuesday, September 20, 11

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

27

Tuesday, September 20, 11

Birds-eye view

Smalltalk is still today one of the few
fully reflective, fully dynamic, object-
oriented development
environments.

We will see how a simple, uniform
object model enables live, dynamic,
interactive software development.

28

Tuesday, September 20, 11

What is Smalltalk?

> Pure OO language
—Single inheritance
—Dynamically typed

> Language and environment
—Guiding principle: “Everything is an Object”
—Class browser, debugger, inspector, …
—Mature class library and tools

> Virtual machine
—Objects exist in a persistent image [+ changes]
—Incremental compilation

29

Tuesday, September 20, 11

What is interesting about Smalltalk?

> Everything is an object
> Everything happens by sending messages
> All the source code is there all the time
> You can't lose code
> You can change everything
> You can change things without restarting the system
> The Debugger is your Friend

30

Tuesday, September 20, 11

How does Smalltalk work?

Image

Changes
+

Virtual machine

Sources
+

31

Tuesday, September 20, 11

32

Tuesday, September 20, 11

instance-of

Object

Point

Object class

Point class

Class

ClassDescription

Behavior

100@100

Metaclass

Metaclass class

Class class

ClassDescription class

Behavior class

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

Adapted from Goldberg & Robson, Smalltalk-80 — The Language
33

Tuesday, September 20, 11

Why is Smalltalk interesting for Software
Evolution?

34

Modeling
(fully OO)

Analysis
(rapid prototyping)

Instrumentation
(dynamic adaptation)

Tuesday, September 20, 11

> Overview
> Laws of Software Evolution
> Reflection and Metaprogramming
> Smalltalk
> Reverse and Reengineering

Roadmap

35

Tuesday, September 20, 11

Some Terminology

“Forward Engineering is the traditional process of moving from
high-level abstractions and logical, implementation-
independent designs to the physical implementation of a
system.”

“Reverse Engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in
another form or at a higher level of abstraction.”

“Reengineering ... is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form.”

 — Chikofsky and Cross [in Arnold, 1993]

36

Tuesday, September 20, 11

Goals of Reverse Engineering

> Cope with complexity
— need techniques to understand large, complex systems

> Generate alternative views
— automatically generate different ways to view systems

> Recover lost information
— extract what changes have been made and why

> Detect side effects
— help understand ramifications of changes

> Synthesize higher abstractions
— identify latent abstractions in software

> Facilitate reuse
— detect candidate reusable artifacts and components

 — Chikofsky and Cross [in Arnold, 1993]

37

Tuesday, September 20, 11

Reverse Engineering Techniques

> Redocumentation
— pretty printers
— diagram generators
— cross-reference listing generators

> Design recovery
— software metrics
— browsers, visualization tools
— static analyzers
— dynamic (trace) analyzers

38

Tuesday, September 20, 11

Goals of Reengineering

> Unbundling
— split a monolithic system into parts that can be separately marketed

> Performance
— “first do it, then do it right, then do it fast” — experience shows this is the

right sequence!
> Port to other Platform

— the architecture must distinguish the platform dependent modules
> Design extraction

— to improve maintainability, portability, etc.
> Exploitation of New Technology

— i.e., new language features, standards, libraries, etc.

39

Tuesday, September 20, 11

Reengineering Techniques

> Restructuring
—automatic conversion from unstructured to structured code
—source code translation

— Chikofsky and Cross
> Data reengineering

—integrating and centralizing multiple databases
—unifying multiple, inconsistent representations
—upgrading data models

— Sommerville, ch 32
> Refactoring

—renaming/moving methods/classes etc.

40

Tuesday, September 20, 11

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

41

Tuesday, September 20, 11

Reverse engineering Patterns

Reverse engineering patterns encode expertise and trade-offs
in extracting design from source code, running systems and
people.

—Even if design documents exist, they are typically out of sync with
reality.

Example: Interview During Demo

42

Tuesday, September 20, 11

Reengineering Patterns

Reengineering patterns encode expertise and trade-offs in
transforming legacy code to resolve problems that have
emerged.

—These problems are typically not apparent in original design but are
due to architectural drift as requirements evolve

Example: Move Behaviour Close to Data

43

Tuesday, September 20, 11

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

44

Tuesday, September 20, 11

What you should know!

> Software “maintenance” is really continuous development
> Real-world programs must change or become less useful

over time
> What is the relationship between a model and its meta-

model?
> What is the difference between reflection and reification?

Between introspection and intercession?
> How does Smalltalk differ from Java?
> How does reverse-engineering differ from reengineering?

45

Tuesday, September 20, 11

Can you answer these questions?

> Why do successful software systems always require
more maintenance?

> What is a model? A meta-model?
> What kind of “reflection” does Java support?
> In Smalltalk, how can you reflect on the VM?
> How do static and dynamic analysis of software systems

differ?

46

Tuesday, September 20, 11

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Tuesday, September 20, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

