
Oscar Nierstrasz

2. Smalltalk — a reflective language

Selected material courtesy Stéphane Ducasse

Friday, September 9, 11

Birds-eye view

2

Less is More — simple syntax and semantics
uniformly applied can lead to an expressive and
flexible system, not an impoverished one.

Friday, September 9, 11

Roadmap

> Smalltalk Basics
> The Environment
> Standard classes

3

Friday, September 9, 11

Roadmap

4

> Smalltalk Basics
> The Environment
> Standard classes

Friday, September 9, 11

5

The origins of Smalltalk

Alan Kay’s Dynabook project (1968)

Alto — Xerox PARC (1973)

Friday, September 9, 11

6

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use it.

Try to answer the question

 “How does this work?”
with
 “I don’t care”.

— Alan Knight. Smalltalk Guru

Friday, September 9, 11

Two things to remember ...

7

Friday, September 9, 11

Everything is an object

Friday, September 9, 11

Everything happens by
sending messages

Friday, September 9, 11

The Smalltalk object model

> Every object is an instance of one class
—... which is also an object
—Single inheritance
—A class defines the structure and the behavior of its instances.

> Dynamic binding
—(Nearly) every object is a reference
—All variables are dynamically typed and bound

> State is private to objects
—“Protected” for subclasses
—Encapsulation boundary is the object

> Methods are public
—“private” methods by convention only

10

Friday, September 9, 11

Smalltalk Syntax

Every expression is a message send

> Unary messages

> Binary messages

> Keyword messages

11

Transcript cr
5 factorial

3 + 4

Transcript show: 'hello world'
2 raisedTo: 32
3 raisedTo: 10 modulo: 5

Friday, September 9, 11

12

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

Friday, September 9, 11

12

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

128

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

Friday, September 9, 11

12

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

128

9!(!)
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

Friday, September 9, 11

13

A typical method in the class Point

<= aPoint
! "Answer whether the receiver is neither
! below nor to the right of aPoint."

! ^ x <= aPoint x and: [y <= aPoint y]

(2@3) <= (5@6) true

Method name Argument Comment

Return Binary message
Keyword messageInstance variable

Block

Friday, September 9, 11

14

Statements and cascades

| p pen |
p := 100@100.
pen := Pen new.
pen up.
pen goto: p; down; goto: p+p

Temporary variables
Statement

Cascade

Friday, September 9, 11

15

Literals and constants

Strings & Characters 'hello' $a

Numbers 1 3.14159

Symbols #yadayada

Arrays #(1 2 3)

Pseudo-variables self super

Constants true false

Friday, September 9, 11

© Oscar Nierstrasz

ST — Smalltalk Basics

2.26

Creating objects

> Class methods

> Factory methods

OrderedCollection new
Array with: 1 with: 2

1@2
1/2

a Point
a Fraction

Friday, September 9, 11

© Oscar Nierstrasz

ST — Smalltalk Basics

2.27

Creating classes

> Send a message to a class (!)

Number subclass: #Complex
! instanceVariableNames: 'real imaginary'
! classVariableNames: ''
! poolDictionaries: ''
! category: 'ComplexNumbers'

Friday, September 9, 11

Roadmap

18

> Smalltalk Basics
> The Environment
> Standard classes

Friday, September 9, 11

Mouse Semantics

Select
Operate

Window

19

Friday, September 9, 11

World Menu

20

Friday, September 9, 11

Accept, DoIt, PrintIt and InspectIt

> Accept
—Compile a method or a class definition

> DoIt
—Evaluate an expression

> PrintIt
—Evaluate an expression and print the result (#printOn:)

> InspectIt
—Evaluate an expression and inspect the result (#inspect)

21

Friday, September 9, 11

Standard development tools

22

Friday, September 9, 11

Debuggers, Inspectors, Explorers

23

Friday, September 9, 11

24

SqueakSource.com

Friday, September 9, 11

25

Categories, Projects and Packages

> A system category MyProject (and possibly
MyProject-*) contains the classes of your application

> A Monticello package MyProject contains the
categories MyProject and MyProject-*

> A SqueakSource project MyProject stores everything in
the Monticello package MyProject

Friday, September 9, 11

Roadmap

26

> Smalltalk Basics
> The Environment
> Standard classes

Friday, September 9, 11

27

Object

Defines common behavior for
all the objects in the system.

Friday, September 9, 11

28

Identity vs. Equality

'foo','bar' = 'foobar'
'foo','bar' == 'foobar'

> = tests Object value
—Should normally be overridden

– Default implementation is == !
—You should override hash too!

> == tests Object identity
—Should never be overridden

Friday, September 9, 11

28

Identity vs. Equality

'foo','bar' = 'foobar'
'foo','bar' == 'foobar'

true
false

> = tests Object value
—Should normally be overridden

– Default implementation is == !
—You should override hash too!

> == tests Object identity
—Should never be overridden

Friday, September 9, 11

29

Printing

> Override printOn: to give your objects a sensible
textual representation

Fraction>>printOn: aStream
! aStream nextPut: $(.
! numerator printOn: aStream.
! aStream nextPut: $/.
! denominator printOn: aStream.
! aStream nextPut: $).

Friday, September 9, 11

30

Object methods to support the programmer

error: aString Signal an error

doesNotUnderstand: aMessage Handle unimplemented
message

halt, halt: aString Invoke the debugger

subclassResponsibility
The sending method is
abstract

shouldNotImplement Disable an inherited
method

deprecated: anExplanationString
Warn that the sending
method is deprecated.

Friday, September 9, 11

31

Numbers

Friday, September 9, 11

32

Abstract methods in Smalltalk

Number>>+ aNumber
! "Answer the sum of the receiver and aNumber."

! self subclassResponsibility

Object>>subclassResponsibility
! "This message sets up a framework for the behavior of the
! class' subclasses. Announce that the subclass should have
! implemented this message."

! self error: 'My subclass should have overridden ',
! ! thisContext sender selector printString

Friday, September 9, 11

33

Strings

Friday, September 9, 11

34

Strings

> To introduce a single quote inside a string, just double it.

#mac asString
12 printString
String with: $A
'can''t' at: 4
'hello', ' ', 'world'

Friday, September 9, 11

34

Strings

> To introduce a single quote inside a string, just double it.

#mac asString
12 printString
String with: $A
'can''t' at: 4
'hello', ' ', 'world'

'mac'
'12'

Friday, September 9, 11

34

Strings

> To introduce a single quote inside a string, just double it.

#mac asString
12 printString
String with: $A
'can''t' at: 4
'hello', ' ', 'world'

'mac'
'12'
'A'

Friday, September 9, 11

34

Strings

> To introduce a single quote inside a string, just double it.

#mac asString
12 printString
String with: $A
'can''t' at: 4
'hello', ' ', 'world'

'mac'
'12'
'A'
 $'

Friday, September 9, 11

34

Strings

> To introduce a single quote inside a string, just double it.

#mac asString
12 printString
String with: $A
'can''t' at: 4
'hello', ' ', 'world'

'mac'
'12'
'A'
 $'
'hello world'

Friday, September 9, 11

35

Literal and dynamic arrays

#(1 + 2 . 3) #(1 #+ 2 #. 3)

{ 1 + 2 . 3 }

Array with: 1+2 with: 3

#(3 3)

#(3 3)

{ … } is a shortcut for Array new …

Literal arrays

Dynamic arrays

Friday, September 9, 11

36

Symbols vs. Strings

> Symbols are used as method selectors and unique keys
for dictionaries
—Symbols are read-only objects, strings are mutable
—A symbol is unique, strings are not

'cal', 'vin' == 'calvin'.

('cal', 'vin') asSymbol == #calvin.

false

true

Friday, September 9, 11

37

Booleans

Friday, September 9, 11

38

IfTrue: IfFalse:

Integer>>factorial
! "Answer the factorial of the receiver."

! self = 0 ifTrue: [^ 1].
! self > 0 ifTrue: [^ self * (self - 1) factorial].
! self error: 'Not valid for negative integers'

Friday, September 9, 11

39

Six Pseudo-Variables

nil A reference to the UndefinedObject

true Singleton instance of the class True

false Singleton instance of the class False

self
Reference to this object
Method lookup starts from object’s class

super
Reference to this object (!)
Method lookup starts from the superclass

thisContext Reification of execution context

The following pseudo-variables are
hard-wired into the Smalltalk compiler.

Friday, September 9, 11

Control Constructs

> All control constructs in Smalltalk are implemented by
message passing
—No keywords
—Open, extensible
—Built up from Booleans and Blocks

40

Friday, September 9, 11

Blocks

> A Block is a closure
—A function that captures variable names in its lexical context
—I.e., a lambda abstraction
—First-class value: can be stored, passed, evaluated

> Use to delay evaluation
> Syntax:

—Returns last expression of the block

41

[:arg1 :arg2 | |temp1 temp2| expression. expression]

Friday, September 9, 11

Block Example

42

|sqr|
sqr := [:n | n*n].
sqr value: 5

25

Friday, September 9, 11

Block evaluation messages

43

[2 + 3 + 4 + 5] value
[:x | x + 3 + 4 + 5] value: 2
[:x :y | x + y + 4 + 5] value: 2 value: 3
[:x :y :z | x + y + z + 5] value: 2 value: 3 value: 4
[:x :y :z :w | x + y + z + w] value: 2 value: 3 value: 4 value: 5

Friday, September 9, 11

44

Various kinds of Loops

|n|
n:= 10.
[n>0] whileTrue: [Transcript show: n; cr. n:=n-1]

1 to: 10 do: [:n | Transcript show: n; cr]

(1 to: 10) do: [:n | Transcript show: n; cr]

10 timesRepeat: [Transcript show: 'hi'; cr]

In each case, what is the target object?

Friday, September 9, 11

45

Collections

Resist the temptation to program your own collections!

Friday, September 9, 11

46

Common messages

#(1 2 3 4) includes: 5
#(1 2 3 4) size
#(1 2 3 4) isEmpty
#(1 2 3 4) contains: [:some | some < 0]
#(1 2 3 4) do:
! [:each | Transcript show: each]
#(1 2 3 4) with: #(5 6 7 8)
! do: [:x : y | Transcript show: x+y; cr]
#(1 2 3 4) select: [:each | each odd]
#(1 2 3 4) reject: [:each | each odd]
#(1 2 3 4) detect: [:each | each odd]
#(1 2 3 4) collect: [:each | each even]
#(1 2 3 4) inject: 0
! into: [:sum :each | sum + each]

false
4
false
false

#(1 3)
#(2 4)
1
{false.true.false.true}

10

Friday, September 9, 11

Iteration — the hard road and the easy
road

How to get absolute values of a collection of integers?

NB: The second solution also works for indexable collections and sets.
47

|aCol result|
aCol := #(2 -3 4 -35 4 -11).
result := aCol species new: aCol size.
1 to: aCol size do:
! [:each | result at: each put: (aCol at: each) abs].
result

 #(2 3 4 35 4 11)

#(2 -3 4 -35 4 -11) collect: [:each | each abs]

 #(2 3 4 35 4 11)

Friday, September 9, 11

What you should know!

> What is the difference between a comment and a string?
> Why does 1+2*3 = 9?
> What is a cascade?
> How is a block like a lambda expression?
> How do you create a new class?
> How do you inspect an object?
> Why does Smalltalk have no special syntax for defining

an abstract method or class?

48

Friday, September 9, 11

Can you answer these questions?

> Why does Smalltalk support single (and not multiple)
inheritance?

> What is the difference between Point x: 1 y: 2 and
(1@2)?

> In Smalltalk, what is the difference between “compile
time” and “run time”?

> If instance variables are really private, why can we see
them with an inspector?

49

Friday, September 9, 11

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Friday, September 9, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

