
Oscar Nierstrasz

3. Understanding Classes and Metaclasses

Selected material courtesy Stéphane Ducasse

Tuesday, 4 October 11

Birds-eye view

Reify your metamodel — A fully reflective system
models its own metamodel.

2

Tuesday, 4 October 11

Roadmap

> Common idioms
> Self and Super
> Metaclasses in 7 points

Tuesday, 4 October 11

Roadmap

> Common idioms
> Self and Super
> Metaclasses in 7 points

4

Tuesday, 4 October 11

5

Snakes and Ladders

See: http://en.wikipedia.org/wiki/Snakes_and_ladders

Tuesday, 4 October 11

6

Scripting a use case

SnakesAndLadders class>>example
! "self example playToEnd"
! ^ (self new)
! ! add: FirstSquare new;
! ! add: (LadderSquare forward: 4);
! ! add: BoardSquare new;
! ! add: BoardSquare new;
! ! add: BoardSquare new;
! ! add: BoardSquare new;
! ! add: (LadderSquare forward: 2);
! ! add: BoardSquare new;
! ! add: BoardSquare new;
! ! add: BoardSquare new;
! ! add: (SnakeSquare back: 6);
! ! add: BoardSquare new;
! ! join: (GamePlayer named: 'Jack');
! ! join: (GamePlayer named: 'Jill');
! ! yourself

> Construct the board
> Add some players
> Play the game

Tuesday, 4 October 11

7

Distributing responsibilities

Tuesday, 4 October 11

8

Lots of Little Methods

> Once and only once
—“In a program written with good style, everything is said once and

only once.”

> Lots of little pieces
—“Good code invariably has small methods and small objects. Only

by factoring the system into many small pieces of state and
function can you hope to satisfy the ‘once and only once’ rule.”

Tuesday, 4 October 11

9

Composed Method

How do you divide a program into methods?

> Divide your program into methods that perform one
identifiable task.

—Keep all of the operations in a method at the same level of
abstraction.

—This will naturally result in programs with many small methods,
each a few lines long.

Tuesday, 4 October 11

10

Snakes and Ladders methods

• 68 methods
• only 7 are more than 6 LOC
" (including comments!)
! — 1 of these is the “main” method
! — the other 6 are test methods

Tuesday, 4 October 11

11

How to initialize objects?

In Smalltalk,
—methods are public, and
— instance variables are private

So, how can a class (an object) initialize the
instance variables of its instances (other objects)?

Tuesday, 4 October 11

12

Explicit Initialization

How do you initialize instance variables to their default
values?
> Implement a method initialize that sets all the values

explicitly.
> Override the class message new to invoke it on new

instances

SnakesAndLadders>>initialize
! super initialize.
! die := Die new.
! squares := OrderedCollection new.
! players := OrderedCollection new.
! turn := 1.
! over := false.

Tuesday, 4 October 11

13

> In Pharo, the method new calls initialize by default.

> NB: You can override new, but you should never override
basicNew!

Behavior>>new
! ^ self basicNew initialize

Who calls initialize?

Tuesday, 4 October 11

14

Constructor Method

How do you represent instance creation?

> Provide methods in the class side “instance creation”
protocol that create well-formed instances. Pass all
required parameters to them.

LadderSquare class>>forward: number
! ^ self new setForward: number

SnakeSquare class>>back: number
! ^ self new setBack: number

Tuesday, 4 October 11

15

Constructor Parameter Method

How do you set instance variables from the parameters
to a Constructor Method?

> Code a single method that sets all the variables. Preface
its name with “set”, then the names of the variables.

SnakeSquare>>setBack: aNumber
! back := aNumber.

BoardSquare>>setPosition: aNumber board: aBoard
! position := aNumber.
! board := aBoard

LadderSquare>>setForward: aNumber
! forward := aNumber.

Tuesday, 4 October 11

15

Constructor Parameter Method

How do you set instance variables from the parameters
to a Constructor Method?

> Code a single method that sets all the variables. Preface
its name with “set”, then the names of the variables.

SnakeSquare>>setBack: aNumber
! back := aNumber.

BoardSquare>>setPosition: aNumber board: aBoard
! position := aNumber.
! board := aBoard

LadderSquare>>setForward: aNumber
! forward := aNumber.

Better yet, use “initialize” as the prefix

Tuesday, 4 October 11

16

Debug Printing Method

How do you code the default printing method?

> There are two audiences:
—you (wanting a lot of information)
—your clients (wanting only external properties)

> Override printOn: to provide information about object’s
structure to the programmer
—Put printing methods in the “printing” protocol

Tuesday, 4 October 11

17

Viewing the game state

SnakesAndLadders example inspect

In order to provide a simple way to monitor the game state
and to ease debugging, we need a textual view of the game

Tuesday, 4 October 11

18

Implementing printOn:

SnakesAndLadders>>printOn: aStream
! squares do: [:each | each printOn: aStream]

BoardSquare>>printOn: aStream
! aStream nextPutAll: '[', position printString, self contents, ']'

LadderSquare>>printOn: aStream
! super printOn: aStream.
! aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream
! aStream nextPutAll: '<-', back asString.
! super printOn: aStream

GamePlayer>>printOn: aStream
! aStream nextPutAll: name

Tuesday, 4 October 11

19

Viewing the game state

SnakesAndLadders example inspect

Tuesday, 4 October 11

20

Interacting with the game

With a bit of care, the Inspector can serve as a basic GUI
for objects we are developing

Tuesday, 4 October 11

21

Query Method

How do you represent testing a property of an object?

> Provide a method that returns a Boolean.
—Name it by prefacing the property name with a form of “be” — is,

was, will etc.

Tuesday, 4 October 11

22

Some query methods

SnakesAndLadders>>isNotOver
! ^ self isOver not

BoardSquare>>isFirstSquare
! ^ position = 1

BoardSquare>>isLastSquare
! ^ position = board lastPosition

BoardSquare>>isOccupied
! ^ player notNil

FirstSquare>>isOccupied
! ^ players size > 0

Tuesday, 4 October 11

23

Constant Method

How do you code a constant?

> Create a method that returns the constant

Fraction>>one
! ^ self numerator: 1 denominator: 1

Tuesday, 4 October 11

Roadmap

> Common idioms
> Self and Super
> Metaclasses in 7 points

24

Tuesday, 4 October 11

Super

How can you invoke superclass behaviour?

> Invoke code in a superclass explicitly by sending a
message to super instead of self.

—The method corresponding to the message will be found in the
superclass of the class implementing the sending method.

—Always check code using super carefully. Change super to self if
doing so does not change how the code executes!

—Caveat: If subclasses are expected to call super, consider using a
Template Method instead!

25

Tuesday, 4 October 11

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.37

Extending Super

How do you add to the implementation of a method
inherited from a superclass?

> Override the method and send a message to super in the
overriding method.

Tuesday, 4 October 11

A closer look at super

27

> Snake and Ladder both extend the printOn: method of
their superclass

BoardSquare>>printOn: aStream
! aStream nextPutAll:
! ! '[', position printString, self contents, ']'

LadderSquare>>printOn: aStream
! super printOn: aStream.
! aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream
! aStream nextPutAll: '<-', back asString.
! super printOn: aStream.

Tuesday, 4 October 11

Normal method lookup

Two step process:
> Lookup starts in the class of the

receiver (an object)
—If the method is defined in the method

dictionary, it is used
—Else, the search continues in the

superclass
> If no method is found, this is an

error …

28

Tuesday, 4 October 11

Message not understood

NB: The default implementation
of doesNotUnderstand: may
be overridden by any class.

When method lookup fails, an error message is
sent to the object and lookup starts again with this
new message.

29

Tuesday, 4 October 11

Super

> Super modifies the usual method lookup to start in the
superclass of the class whose method sends to super

—NB: lookup does not start in the superclass of the receiver!
– Cf. C new bar on next slide

—Super is not the superclass!

30

Tuesday, 4 October 11

Super sends

A new bar
B new bar
C new bar
D new bar
E new bar

NB: It is usually a mistake to
super-send to a different method.
D>>bar should probably do self
foo, not super foo!

31

Tuesday, 4 October 11

Super sends

A new bar
B new bar
C new bar
D new bar
E new bar

'Abar'
'Abar & Afoo'
'Abar & Cfoo'
'Abar & Cfoo & Cfoo'
'Abar & Efoo & Cfoo'

NB: It is usually a mistake to
super-send to a different method.
D>>bar should probably do self
foo, not super foo!

31

Tuesday, 4 October 11

Self and super

Sending to self is
always dynamic
Sending to super
is always static

32

Tuesday, 4 October 11

Roadmap

> Common idioms
> Self and Super
> Metaclasses in 7 points

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

Adapted from Goldberg & Robson, Smalltalk-80 — The Language
34

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

35

Tuesday, 4 October 11

1. Every object is an instance of a class

Remember the Snakes and Ladders Board Game …

36

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

37

Tuesday, 4 October 11

2. Every class inherits from Object

Every object is-an Object =
The class of every object
ultimately inherits from Object

aSnakeSquare is-a SnakeSquare
and is-a BoardSquare
and is-an Object

38

Tuesday, 4 October 11

2. Every class inherits from Object

Every object is-an Object =
The class of every object
ultimately inherits from Object

Caveat: in Pharo, Object has a superclass called ProtoObject

aSnakeSquare is-a SnakeSquare
and is-a BoardSquare
and is-an Object

38

Tuesday, 4 October 11

The Meaning of is-a

When an object receives a message, the method is
looked up in the method dictionary of its class, and, if
necessary, its superclasses, up to Object

39

Tuesday, 4 October 11

Responsibilities of Object

> Object
—represents the common object behavior
—error-handling, halting …
—all classes should inherit ultimately from Object

40

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

41

Tuesday, 4 October 11

3. Every class is an instance of a
metaclass

> Classes are objects too!
—Every class X is the unique instance of its metaclass, called X class

42

Tuesday, 4 October 11

Metaclasses are implicit

> There are no explicit metaclasses
—Metaclasses are created implicitly when classes are created
—No sharing of metaclasses (unique metaclass per class)

43

Tuesday, 4 October 11

Metaclasses by Example

44

a Set(SnakeSquare FirstSquare LadderSquare)
a Set()

SnakeSquare canUnderstand: #new
SnakeSquare canUnderstand: #setBack:

false
true

SnakeSquare allInstances
SnakeSquare instVarNames an Array(<-2[6] <-4[11] <-6[11])

#('back')

SnakeSquare back: 5 <-5[nil]

SnakeSquare selectors

an IdentitySet(#setBack: #printOn: #destination)

BoardSquare allSubclasses
SnakeSquare allSubclasses

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

45

Tuesday, 4 October 11

4. The metaclass hierarchy parallels the
class hierarchy

46

Tuesday, 4 October 11

Uniformity between Classes and Objects

> Classes are objects too, so …
—Everything that holds for objects holds for classes as well
—Same method lookup strategy

– Look up in the method dictionary of the metaclass

back: is a Snake constructor method
47

Tuesday, 4 October 11

About the Buttons

48

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

49

Tuesday, 4 October 11

5. Every metaclass inherits from Class
and Behavior

Every class is-a Class =
The metaclass of every
class inherits from Class

50

Tuesday, 4 October 11

Where is new defined?

51

Tuesday, 4 October 11

Responsibilities of Behavior

> Behavior
—Minimum state necessary for objects that have instances.
—Basic interface to the compiler.
—State:

– class hierarchy link, method dictionary, description of instances
(representation and number)

—Methods:
– creating a method dictionary, compiling method
– instance creation (new, basicNew, new:, basicNew:)
– class hierarchy manipulation (superclass:, addSubclass:)
– accessing (selectors, allSelectors, compiledMethodAt:)
– accessing instances and variables (allInstances, instVarNames)
– accessing class hierarchy (superclass, subclasses)
– testing (hasMethods, includesSelector, canUnderstand:, inheritsFrom:,

isVariable)

52

Tuesday, 4 October 11

Responsibilities of ClassDescription

> ClassDescription
—adds a number of facilities to basic Behavior:

– named instance variables
– category organization for methods
– the notion of a name (abstract)
– maintenance of Change sets and logging changes
– most of the mechanisms needed for fileOut

—ClassDescription is an abstract class: its facilities are intended for
inheritance by the two subclasses, Class and Metaclass.

53

Tuesday, 4 October 11

Responsibilities of Class

> Class
—represents the common behavior of all classes

– name, compilation, method storing, instance variables …
—representation for classVariable names and shared pool variables

(addClassVarName:, addSharedPool:, initialize)
—Class inherits from Object because Class is an Object

– Class knows how to create instances, so all metaclasses should inherit
ultimately from Class

54

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of Metaclass

55

Tuesday, 4 October 11

6. Every metaclass is an instance of
Metaclass

56

Tuesday, 4 October 11

Metaclass Responsibilities

> Metaclass
—Represents common metaclass Behavior

– instance creation (subclassOf:)
– creating initialized instances of the metaclass’s sole instance
– initialization of class variables
– metaclass instance protocol (name:inEnvironment:subclassOf:....)
– method compilation (different semantics can be introduced)
– class information (inheritance link, instance variable, ...)

57

Tuesday, 4 October 11

Metaclasses in 7 points

1.Every object is an instance of a class
2.Every class eventually inherits from Object
3.Every class is an instance of a metaclass
4.The metaclass hierarchy parallels the class hierarchy
5.Every metaclass inherits from Class and Behavior
6.Every metaclass is an instance of Metaclass
7.The metaclass of Metaclass is an instance of

Metaclass

58

Tuesday, 4 October 11

7. The metaclass of Metaclass is an
instance of Metaclass

59

Tuesday, 4 October 11

Navigating the metaclass hierarchy

60

MetaclassHierarchyTest>>testHierarchy
! "The class hierarchy"
! self assert: SnakeSquare superclass = BoardSquare.
! self assert: BoardSquare superclass = Object.
! self assert: Object superclass superclass = nil.
! "The parallel metaclass hierarchy"
! self assert: SnakeSquare class name = 'SnakeSquare class'.
! self assert: SnakeSquare class superclass = BoardSquare class.
! self assert: BoardSquare class superclass = Object class.
! self assert: Object class superclass superclass = Class.
! self assert: Class superclass = ClassDescription.
! self assert: ClassDescription superclass = Behavior.
! self assert: Behavior superclass = Object.
! "The Metaclass hierarchy"
! self assert: SnakeSquare class class = Metaclass.
! self assert: BoardSquare class class = Metaclass.
! self assert: Object class class = Metaclass.
! self assert: Class class class = Metaclass.
! self assert: ClassDescription class class = Metaclass.
! self assert: Behavior class class = Metaclass.
! self assert: Metaclass superclass = ClassDescription.
! "The fixpoint"
! self assert: Metaclass class class = Metaclass

Tuesday, 4 October 11

What you should know!

> How is a new instance of a class initialized?
> How is super static and self dynamic?
> Why is it usually a mistake for a method to super-send a

different message?
> What does is-a mean?
> What is the difference between sending a message to an

object and to its class?
> What are the responsibilities of a metaclass?
> What is the superclass of Object class?
> Where is new defined?

61

Tuesday, 4 October 11

Can you answer these questions?

> When should you override new?
> When does self = super? When does super = self?
> What does self refer to in the method SnakesAndLadders

class>>example?
> Why are there no explicit metaclasses?
> Why don’t metaclasses inherit from Class?
> Are there any classes that don’t inherit from Object?
> Is Metaclass a Class? Is it a Metaclass? Why or why not?
> Where are the methods class and superclass defined?

62

Tuesday, 4 October 11

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Tuesday, 4 October 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

