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Software is Data...

> Data that you analyze
> Data that you measure
> Data that evolves and 

can be mined 
> ...
> Data that is big data
> Data that you visualize

Wednesday, November 23, 11



A History of History Analysis in Software

1970 

NATO 
Software 
Engineering 
Conference
’68

1980 1990 2010

Seesoft
Paper,
by Eick et al.
’92

Mylyn becomes 
an official  
Eclipse project
’10

2000

Logical 
Coupling, 
by Gall et al.
’98

SCCS
Bell Labs
’72

RCS
Purdue University
’82

CVS
Client Server
’90

MSR 
Workshop
‘04

> 20 years of software engineering before people start 
doing research in analyzing software repositories
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A Quick Softwarenaut Demo...

> ... showing that new 
classes appear all the 
time during the evolution 
of the system

> But are they really “new”?
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Origin Analysis

> Tu & Godfrey ’02
> Works at the function level 
> Combines

—Bertillonage Analysis
– Assumes that Complexity 

Metrics do not change much
—Dependency Analysis

– Assumes that relationships do 
not change much

> ... How to know if an 
entity is the same 
in two versions?
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Refactoring Detection

> Dig et al. ’06 detect 
refactorings of Packages, 
Classes, Methods 

> Combination of syntactic 
and semantic analysis

> Shingles Algorithm How to detect refactorings 
in object-oriented systems?
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The Approach of Dig et al.: The Shingles 
Algorithm

> Input
—sequence of tokens 

representing method body 
without signature

> Output
—Multi-sets of integeres
—Similar inputs generate 

similar outputs

The original Shingles paper: 
Broder, On the resemblance and containment of documents

> Algorithm
—W: window size 
—S: maximum set size
—Compute hashes while 

sliding the window 
—Sort shingles and keep the 

first S
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The Approach of Dig et al.: Shingles 
Algorithm (Example with W=2 and S=10)
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The Approach of Dig et al.: Semantic 
Analysis

> Seven Detection Strategies 
—applied in order
—based on dependencies 

between artifacts
– method calls
– subclassing
– fields
– arguments
– parameters

1. RenamePackage (RP) 
2. RenameClass (RC) 
3. RenameMethod (RM) 
4. PullUpMethod (PUM) 
5. PushDownMethod (PDM) 
6. MoveMethod (MM) 
7. ChangeMethodSignature 

(CMS) 
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The Approach of Dig et al.: Results

> More than 85% Precision 
and Recall on
—Eclipse
—Struts
—HotDraw

> What’s next? CatchUp!
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Logical Coupling

> Gall et al. ‘98
> Based on an an industrial 

case study
—Subsystems
—Modules
—Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

How to detect dependencies 
based on history?
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> Structural / Data Flow 
Analysis
—Disadvantages: 

– can not capture all the 
situations (i.e. writing to a file, 
reading from a file)

– does not work with 
documents that are not 
source code

Why history based?
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Change Sequence Analysis

> Detects when two sub-
systems change together

> Logical coupling is 
stronger if the 
subsequence is larger
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Change Report Analysis

> There are two types of 
changes that are 
documented
—Feature additions
—Bug Requests

> The coupling between 
subsystems must be 
verified
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Logical Coupling Summary

> Advantages
—Does not require the code to 

compile
—Can work with any types of 

documents
> Simplification

—Versioning systems in the 
real world are a mess (CVS)
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Change Propagation

> Hassan & Holt ’04
> Compare heuristics

—Developer (DEV)
—Historical co-change (HIS)
—Structural: Call/Use/Define 

(CUD)
—Code layout (FIL) What other entities have 

to change when a given 
one changes?
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Evaluating the heuristics based on 
history with precision and recall

> Precision
> Recall
> Compute for every relevant change set and average 
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Hybrid Technique

Entities in the same file that 
changed together at least 
A%-B% of the time (FIL)

OR
Entities that changed 
together at least A% of the 
time (prune HIS)
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Change Propagation Discussion

> Heuristics
—Only work with one element 

in the prediction set
—Are symmetric

> File-level is a limitation

Wednesday, November 23, 11



Roadmap

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Wednesday, November 23, 11



How to detect bugs in 
apps that use APIs about 
which you do not have 
knowledge?

Common Error Patterns

> Livshits & Zimmermann 
’05

> Data mining reveals 
frequent patterns 

- Matching Method 
Pairs
- State Machines
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Principles

1.API specific errors
2.Co-addition is a pattern
3.Small commits are fixes
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When to look for pattern violations?

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
—Coverage
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Dynamine: The Approach

> Human Input is required
> Mines from the history
> Validates at runtime
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Mining for Likely Patterns: The Apriori 
Algorithm

> Concepts
—Usage Pattern
—Transaction
—Support Count

> Input
—Minimum Support

> Output
—Frequent Patterns

> Implementation 
—Iterative
—Exponential
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Pattern Filtering

> Consider a subset of the 
methods
—ignore initial revisions
—ignore common calls

> Consider small patterns 
only
—group calls by access path
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Pattern Ranking & Classification

> Lexicographically on 
support count

> Corrective ranking
—assumes on one-line 

changes are bug-fixes
—used as first lexicographic 

category improves bug 
finding

> Classification
—Usage
—Error
—Unlikely

Wednesday, November 23, 11



Results
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Associating Artefacts with Tasks

> Kersten & Murphy ‘05
> Mylar/Mylin
> Task-Focused Interface
> Degree of Interest 

ranking
How to filter the large 
amount of information 
available in the IDE?
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Further Directions (Kagdi et al. ’07)

> Basic evolution principles
—Refactorings breaking clients (Dig & Johnson ’05)
—Understanding the rethoric of small changes (Puru & Perry ’05)

> Change-Based repositories
—Replay (Hattori et. al ’11)

> Bug prediction
—Extensive comparison of approaches (D’Ambros et al. ’10)

> Risk Prediction
—The Code Orb, (Lopez ’11)
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Benefits of Historical Analysis

> Predict various aspects of the system based on the past 
—Temporal locality 
—Co-change patterns

> Increase the amount of available information 
> Allows empirical validation of hypotheses
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Enablers of Historical Analysis

> Versioning systems
> Increased amounts of historical data
> Availability of different types of data

—developer interaction
—bug/issue tracking

> Modern IDE’s
—plugin philosophy

– collecting data
– playground for features
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What you should know!

> What is origin analysis 
> What is logical coupling
> How does the Apriori algorithm function
> What are shingles and how do they work

39
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Can you answer these questions?

> How does origin analysis work in the approach of Tu & 
Godfrey?

> Can you compare the Bertillonage and the Shingles 
approaches?

> Why does the Dynamine tool require dynamic analysis?
> What heuristics would you use to predict classes that 

change together and why?
> Can you discuss some of the advantages and some of 

the disadvantages of the shingles technique?

40
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Further Reading

> Mylar, a Degree of Interest model for IDE’s, Kersten & Murphy ’05
> The Role of Refactorings in API Evolution, Dig & Johnson, ’05
> The code orb: supporting contextualized coding via at-a-glance views, Lopez ’11
> Modeling History to Understand Software Evolution, Girba, ’05
> An extensive comparison of bug prediction approaches, D’Ambros et al., ’10
> Software Evolution Comprehension: Replay to Rescue, Hattori et al., ’11
> A survey and taxonomy of approaches for mining software repositories in the context of software 

evolution, Kagdi et al. ’07
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