
November 23, 2011

Mircea Lungu

Mining Software Repositories

Wednesday, November 23, 11

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Roadmap

Wednesday, November 23, 11

Software is Data...

> Data that you analyze
> Data that you measure
> Data that evolves and

can be mined
> ...
> Data that is big data
> Data that you visualize

Wednesday, November 23, 11

A History of History Analysis in Software

1970

NATO
Software
Engineering
Conference
’68

1980 1990 2010

Seesoft
Paper,
by Eick et al.
’92

Mylyn becomes
an official
Eclipse project
’10

2000

Logical
Coupling,
by Gall et al.
’98

SCCS
Bell Labs
’72

RCS
Purdue University
’82

CVS
Client Server
’90

MSR
Workshop
‘04

> 20 years of software engineering before people start
doing research in analyzing software repositories

Wednesday, November 23, 11

References

> Main Materials
— An Integrated Approach for Studying Architectural Evolution, Tu & Godfrey, ’02
— Automated Detection of Refactorings in Evolving Components, Dig et al., ’06
— Detection of Logical Coupling Based on Product Release History, Gall et al., ’98
— Predicting Change Propagation in Software Systems, Hassan & Holt, ’04
— DynaMine: finding common error patterns by mining software revision histories,

Livshits & Zimmerman, ’05

5

Wednesday, November 23, 11

Roadmap

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

A Quick Softwarenaut Demo...

> ... showing that new
classes appear all the
time during the evolution
of the system

> But are they really “new”?

Wednesday, November 23, 11

Origin Analysis

> Tu & Godfrey ’02
> Works at the function level
> Combines

—Bertillonage Analysis
– Assumes that Complexity

Metrics do not change much
—Dependency Analysis

– Assumes that relationships do
not change much

> ... How to know if an
entity is the same
in two versions?

Wednesday, November 23, 11

Refactoring Detection

> Dig et al. ’06 detect
refactorings of Packages,
Classes, Methods

> Combination of syntactic
and semantic analysis

> Shingles Algorithm How to detect refactorings
in object-oriented systems?

Wednesday, November 23, 11

The Approach of Dig et al.: The Shingles
Algorithm

> Input
—sequence of tokens

representing method body
without signature

> Output
—Multi-sets of integeres
—Similar inputs generate

similar outputs

The original Shingles paper:
Broder, On the resemblance and containment of documents

> Algorithm
—W: window size
—S: maximum set size
—Compute hashes while

sliding the window
—Sort shingles and keep the

first S

Wednesday, November 23, 11

The Approach of Dig et al.: Shingles
Algorithm (Example with W=2 and S=10)

Wednesday, November 23, 11

The Approach of Dig et al.: Semantic
Analysis

> Seven Detection Strategies
—applied in order
—based on dependencies

between artifacts
– method calls
– subclassing
– fields
– arguments
– parameters

1. RenamePackage (RP)
2. RenameClass (RC)
3. RenameMethod (RM)
4. PullUpMethod (PUM)
5. PushDownMethod (PDM)
6. MoveMethod (MM)
7. ChangeMethodSignature

(CMS)

Wednesday, November 23, 11

The Approach of Dig et al.: Results

> More than 85% Precision
and Recall on
—Eclipse
—Struts
—HotDraw

> What’s next? CatchUp!

Wednesday, November 23, 11

Roadmap

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Logical Coupling

> Gall et al. ‘98
> Based on an an industrial

case study
—Subsystems
—Modules
—Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

How to detect dependencies
based on history?

Wednesday, November 23, 11

> Structural / Data Flow
Analysis
—Disadvantages:

– can not capture all the
situations (i.e. writing to a file,
reading from a file)

– does not work with
documents that are not
source code

Why history based?

Wednesday, November 23, 11

Change Sequence Analysis

> Detects when two sub-
systems change together

> Logical coupling is
stronger if the
subsequence is larger

Wednesday, November 23, 11

Change Report Analysis

> There are two types of
changes that are
documented
—Feature additions
—Bug Requests

> The coupling between
subsystems must be
verified

Wednesday, November 23, 11

Logical Coupling Summary

> Advantages
—Does not require the code to

compile
—Can work with any types of

documents
> Simplification

—Versioning systems in the
real world are a mess (CVS)

Wednesday, November 23, 11

Change Propagation

> Hassan & Holt ’04
> Compare heuristics

—Developer (DEV)
—Historical co-change (HIS)
—Structural: Call/Use/Define

(CUD)
—Code layout (FIL) What other entities have

to change when a given
one changes?

Wednesday, November 23, 11

Evaluating the heuristics based on
history with precision and recall

> Precision
> Recall
> Compute for every relevant change set and average

Wednesday, November 23, 11

Hybrid Technique

Entities in the same file that
changed together at least
A%-B% of the time (FIL)

OR
Entities that changed
together at least A% of the
time (prune HIS)

Wednesday, November 23, 11

Change Propagation Discussion

> Heuristics
—Only work with one element

in the prediction set
—Are symmetric

> File-level is a limitation

Wednesday, November 23, 11

Roadmap

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

How to detect bugs in
apps that use APIs about
which you do not have
knowledge?

Common Error Patterns

> Livshits & Zimmermann
’05

> Data mining reveals
frequent patterns

- Matching Method
Pairs
- State Machines

Wednesday, November 23, 11

Principles

1.API specific errors
2.Co-addition is a pattern
3.Small commits are fixes

Wednesday, November 23, 11

When to look for pattern violations?

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
—Coverage

Wednesday, November 23, 11

Dynamine: The Approach

> Human Input is required
> Mines from the history
> Validates at runtime

Wednesday, November 23, 11

Mining for Likely Patterns: The Apriori
Algorithm

> Concepts
—Usage Pattern
—Transaction
—Support Count

> Input
—Minimum Support

> Output
—Frequent Patterns

> Implementation
—Iterative
—Exponential

Wednesday, November 23, 11

Pattern Filtering

> Consider a subset of the
methods
—ignore initial revisions
—ignore common calls

> Consider small patterns
only
—group calls by access path

Wednesday, November 23, 11

Pattern Ranking & Classification

> Lexicographically on
support count

> Corrective ranking
—assumes on one-line

changes are bug-fixes
—used as first lexicographic

category improves bug
finding

> Classification
—Usage
—Error
—Unlikely

Wednesday, November 23, 11

Results

Wednesday, November 23, 11

Associating Artefacts with Tasks

> Kersten & Murphy ‘05
> Mylar/Mylin
> Task-Focused Interface
> Degree of Interest

ranking
How to filter the large
amount of information
available in the IDE?

Wednesday, November 23, 11

Roadmap

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Further Directions (Kagdi et al. ’07)

> Basic evolution principles
—Refactorings breaking clients (Dig & Johnson ’05)
—Understanding the rethoric of small changes (Puru & Perry ’05)

> Change-Based repositories
—Replay (Hattori et. al ’11)

> Bug prediction
—Extensive comparison of approaches (D’Ambros et al. ’10)

> Risk Prediction
—The Code Orb, (Lopez ’11)

Wednesday, November 23, 11

Benefits of Historical Analysis

> Predict various aspects of the system based on the past
—Temporal locality
—Co-change patterns

> Increase the amount of available information
> Allows empirical validation of hypotheses

Wednesday, November 23, 11

Enablers of Historical Analysis

> Versioning systems
> Increased amounts of historical data
> Availability of different types of data

—developer interaction
—bug/issue tracking

> Modern IDE’s
—plugin philosophy

– collecting data
– playground for features

Wednesday, November 23, 11

> Introduction
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining the history for relationships
—Logical coupling
—Change propagation

> Mining a history for rules
—Common error patterns
—Associating artefacts with tasks

> And more...

Roadmap

Wednesday, November 23, 11

What you should know!

> What is origin analysis
> What is logical coupling
> How does the Apriori algorithm function
> What are shingles and how do they work

39

Wednesday, November 23, 11

Can you answer these questions?

> How does origin analysis work in the approach of Tu &
Godfrey?

> Can you compare the Bertillonage and the Shingles
approaches?

> Why does the Dynamine tool require dynamic analysis?
> What heuristics would you use to predict classes that

change together and why?
> Can you discuss some of the advantages and some of

the disadvantages of the shingles technique?

40

Wednesday, November 23, 11

Further Reading

> Mylar, a Degree of Interest model for IDE’s, Kersten & Murphy ’05
> The Role of Refactorings in API Evolution, Dig & Johnson, ’05
> The code orb: supporting contextualized coding via at-a-glance views, Lopez ’11
> Modeling History to Understand Software Evolution, Girba, ’05
> An extensive comparison of bug prediction approaches, D’Ambros et al., ’10
> Software Evolution Comprehension: Replay to Rescue, Hattori et al., ’11
> A survey and taxonomy of approaches for mining software repositories in the context of software

evolution, Kagdi et al. ’07

41

Wednesday, November 23, 11

http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Wednesday, November 23, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

