Software Design and Evolution
2014 Prof. O. Nierstrasz, Mircea Lungu, Nevena Milojkovi¢ and Haidar Osman

Project

“Software optimization is the process of modifying a software system to make some aspect of it work
more efficiently. In general, a computer program may be optimized so that it executes more rapidly.
Optimization may include finding a bottleneck, a critical part of the code that is the primary consumer of
the needed resource.” — Wikipedia

The goal of the project is to give you a taste of what it means to build a software analysis tool. You
will use and combine the techniques learnt during the course: static analysis, dynamic analysis, and
visualisation. The project is to find the most time-consuming methods in a given Java system.

Project Roadmap

The project will be graded with a maximum of 30 points. The points will be distributed across the
following steps:

1. Static analysis
(a) Statically create a call-graph of a given Java project, using the CHA algorithm and Moose

(b) Visualise the call-graph using Roassal, for example, as in [Figure 1
(c) Produce a list of methods from the system at hand, as in[Table |

O Method
. Class

— Call

Figure 1: Call-graph example

2. Dynamic analysis

(a) Dynamically create a call-graph of a given Java project. Using any instrumentation frame-
work (like Javassist), collect the necessary data to build up the call graph. In other words, for
each method invocation, you need the invoked method signature, the invoking method signa-
ture, and their containing classes. Also you should get for each method m the full execution
time 7,,,, what is the time spent within the method from beginning to end. You should also
report for each method m the time spent locally, 7, namely the time spent just inside that

page 1 October 28, 2014



Software Design and Evolution
2014

Prof. O. Nierstrasz, Mircea Lungu, Nevena Milojkovi¢ and Haidar Osman

Table 1: Example of statically-produced list of methods. This list is ordered descendingly based on

LOC*NOIC
Method Full Name Number of Number of LOC * NOIC
Lines of Code Incoming Calls
(LOO) (NOICO)
scg.parsing.Parser.parse(String) 213 5 1065
scg.utilities.Dispatcher.spawn(Thread) | 75 10 750
scg.main.MainClass.main(String[]) 17 0 0

method without considering the time spent inside called methods, as in [Figure 2|
T =T56—-T8S51

T/ =TS6—TS1— Tz — Tons
Thy = TS3 — TS2
Tz = TS5 — TS4
TS1 TS2 TS3 TS4 TS5 TS6
| m2() ] m3()

- LR

TS1 is the timestamp of entering method m1.
TS2 is the timestamp of entering method m2
TS3 is the timestamp of exiting method m2
TS4 is the timestamp of entering method m3
TS5 is the timestamp of exiting method m3
TS6 is the timestamp of exiting method m1

Figure 2: the methods m2() and m(3) are invoked from the method m1()

(b) Refine the statically produced call graph with the dynamically produced information.

(c) Produce a list of methods from the system at hand as in[Table 2] using the collected data from
your instrumentation.

(d) Produce the same list of methods using an off-the shelf profiler (hprof, xprof, profile).

3. Result analysis

(a) Compare the lists of methods using Spearman Correlation (Statically-produced list, Dynamically-
produced list, and the profiler-produced list)

page 2

October 28, 2014



Software Design and Evolution
Prof. O. Nierstrasz, Mircea Lungu, Nevena Milojkovi¢ and Haidar Osman

2014

Table 2: Example of dynamically-produced list of methods. This list is ordered descendingly based on

T’
Method Full Name T}, T, Number of
(m.s.) (m.s.) Outgoing Calls
scg.parsing.Parser.parse(String) 350 500 3
scg.utilities.Dispatcher.spawn(Thread) | 200 230 2
scg.main.MainClass.main(String[]) 14 3000 2
(b) Make sense of the results by comparing the types of analysis and by diving into the source
code when necessary. For instance, if a method appears in the top 10 in one list and it does
not in the other list, see why does that happen in terms of code.
Final Report

You should provide a brief description (1-3 pages) in which you report:

* Design decisions.

* Interesting problems and solutions.

¢ Limitations.

* Any extra information you want us to know.

page 3

October 28, 2014



