
SMA:
Software Modeling and Analysis

Practical Session
Week 03

Assignment 02

Discussion

A02 - Exercise 01

Nature of Smalltalk and GT
a) Which threat arises when you develop in a live system?

Execution of random code might alter the execution environment and
introduce future problems.

b) What is a message in Smalltalk?

A02 - Exercise 01

Nature of Smalltalk and GT
c) What is a block in Smalltalk?

Lambda-expression-like construct that defines an anonymous function. Blocks
may take one or more arguments and can have local variables.

Their syntax is: ([:i :j :k | ...])

d) How do Smalltalk, Pharo and GT relate to each other?
Smalltalk is the programming language used in Pharo and GT. Pharo is
(mostly) implemented in Smalltalk. GT is a sophisticated framework written in
Smalltalk on top of Pharo that uses a headless VM.

A02 - Exercise 01

Nature of Smalltalk and GT
e) What are counterparts of GT tools in your favorite development

environment?

Playground a sophisticated shell with inspection capabilities

Coder an integrated development environment (IDE)

Git a Git client

Monitor resource viewer / task-manager

ExamplesExplorer (offline) help resources

Transcript debug or console output window

Morphic World the base Pharo windowing system and IDE

Spotter a search that inspects names and file content

A02 - Exercise 02

Object inspection
a) What is the difference between a String and a Symbol in Smalltalk?

Why is it important?

Symbols are immutable and unique. Strings are mutable and not
unique. Because Symbols are immutable, they should never be used
when their value has to change over time.

A02 - Exercise 02

Object inspection
b) Implement provided pseudo code in Smalltalk.

[:scoreOfPlayerA :scoreOfPlayerB | (scoreOfPlayerA > scoreOfPlayerB)

ifTrue:[Transcript show:'Player A won';cr.]

ifFalse:[(scoreOfPlayerA < scoreOfPlayerB)

ifTrue:[

Transcript show:'Player B won';cr.]

ifFalse:[

Transcript show:'Match is declared as draw';cr.

]

]

] value:38 value:44.

A02 - Exercise 02

c) includes: anObject

How many classes in GT implement the message above?

How many messages in GT use that particular message?

We found 60 classes that implement that message, and more than four
thousand messages that use it (e.g., 4 531 in the current Apple macOS GT
build).

d) Which message in GT can be sent to a class to find all its subclasses?

subclasses

A02 - Exercise 03

CallGraph
Find the top ten most frequently invoked methods in the provided CallGraph
representation.
Code:

cg := CallGraph fromFile: 'Calls.txt’.

result := (cg methods sorted: [:a :b | a calls size >= b calls size]).

Result:
org.clapper.util.misc.LRUMap$LRULinkedList.addToHead
org.clapper.util.misc.FileHashMap.checkValidity
org.clapper.util.misc.MultiIterator.checkIterator
org.clapper.util.misc.LRUMap.doPut
org.clapper.util.misc.LRUMap.clearTo
org.clapper.util.misc.LRUMap$LRULinkedListEntry.setKeyValue
org.clapper.util.text.AbstractVariableSubstituter.legalVariableCharacter
org.clapper.util.misc.MultiValueMap.keySet
org.clapper.util.misc.MultiValueMap.put
org.clapper.util.misc.FileHashMap$ValuesFile.getFile

Assignment 03

Preview

A03 - Exercise 01

Metamodels (2.5 pts)
i) What is a metamodel?

ii) How are metamodels used in Pharo?

iii) What are responsibilities of a metaclass in Pharo?

iv) Where is ProtoObject located in Pharo’s class hierarchy?

v) What is the purpose of the class ProtoObject?

A03 - Exercise 02

Sub and super classes (3 pts)
(you have to provide your code snippet and the result)

i) How many superclasses does Collection have?

ii) How many direct subclasses does Collection have?

iii) How many indirect subclasses does Collection have?

A03 - Exercise 03

Class identity (3 pts)

a) Who new amIClassy.

b) Who new classy = Who new classy1.

c) Who new classy1 = Who new classy2.
03 / 14

A03 - Exercise 04

Object instantiation (1.5 pts)

i) Where is new defined?

ii) Explain Pharo’s message implementation resolution strategy for the new message.

iii) List the concrete code in GT finally executed by the message new.

