
SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Assignment 04 — 07.10.2020– v1.0b
Smalltalk: Reflection

Please submit this assignment by email to pascal.gadient@inf.unibe.ch before 14. October 2020, 10:15am.

Exercise 1 - Hierarchy traversal (1 pt)

Write a method that finds the class with the longest inheritance chain among all Smalltalk classes in the
GT programming environment.

NB: To access all classes of Smalltalk, you can use SystemNavigation default allClasses.

Exercise 2 - Method overrides (2 pts)

Write a method to find all methods that override an abstract method in GT.

Exercise 3 - Query methods (2 pts)

Write a method that finds all classes with at least one query method in GT.

NB: Query methods test a property of an object. Such methods are prefixed with is, was or will.

Exercise 4 - Root methods (2 pts + 2 pts BONUS)

i) Find all root methods in GT.

NB: A “root method” is a method whose selector has been implemented in a class, such that the
superclasses of that class do not understand it.

ii) (BONUS) Find all duck-typed methods in GT.

NB: Duck-typed methods have the same selector but are not related by inheritance. That is, af-
ter finding all root methods, find those with the same selector.

Please continue reading on the next page.

page 1 of 2

mailto:pascal.gadient@inf.unibe.ch


SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 5 - Dynamic coding (3 pts)

This exercise carries on with exercise 3 of the second assignment. As stated before, you have to download
the CallGraph code from Github, and you must store the Calls.txt file in the same folder as the
GT image file.

Your task is to redefine the method doesNotUnderstand: aMessage in the provided class Call.
The redefined method should dynamically create an instance variable and a method that returns the num-
ber of arguments. In order to achieve that, you are supposed to follow these three steps:

Step 1: Within the method, add dynamically the instance variable numberOfArguments to the class
Call if it does not already exist.

Step 2: Within the method, add dynamically the method below to the class Call. Since you are adding
that method during run time, you must compile it from a String representation.

numberOfArguments
numberOfArguments := args size.
^ numberOfArguments.

Step 3: So far, the initial execution does nothing but enable the numberOfArguments method.
Hence, we have to resend the initial message to self.

You can test your implementation by executing the following code:

(CallGraph fromFile: 'Calls.txt') calls
collect: [ :each | each numberOfArguments]

After you successfully implemented the doesNotUnderstand method, the statement will print the
number of arguments for every call in the call graph (without raising a doesNotUnderstand error).

page 2 of 2


