
SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Assignment 06 — 21.10.2020 – v1.0
Software Visualization

Please submit this exercise by email to pascal.gadient@inf.unibe.ch before 28 October 2020, 10:15am.

You must submit your code as editable text, i.e., use plain text file(s).

For this exercise, we need Pharo 9.0 (instead of the previous 8.0 releases). If not already done, download
the latest stand-alone release of Pharo Launcher from here and install the application. After it is suc-
cessfully installed, start the application and click on “New” (top left). In the new window that appears,
choose “Official distributions” and “Pharo 9.0 - 64bit (development version, latest)” (or the correspond-
ing 32bit release if your CPU or OS does not support 64 bits). Click on “Create image”. Select the newly
created Pharo entry from the list and click on “Launch”. A new window that runs Pharo will be displayed.

Next, we have to enable additional feature support in Roassal3, e.g., for the method numberOfLines-
OfCode. For that, in the main screen of Pharo 9.0 click on the menu “Tools”, then “Roassal3”, and fi-
nally on “Load full version”. This process can take several minutes depending on your device’s CPU and
internet connection. We advise you to save the image when the installation succeeded to avoid redoing
this process.

Your task is to create plots that look as similar as possible to those presented in each exercise, including
the colors and spacings.

Troubleshooting:

1. Problem (macOS only):
Launcher won’t launch.

Solution:
Change the launcher setting to launch with login shell (query “login” in the settings and uncheck
“Launch image from a login shell”)

2. Problem (macOS only):
Launcher won’t launch.

Solution:
Acknowledge the dialog where the app asks for trust.

page 1 of 5

mailto:pascal.gadient@inf.unibe.ch
https://pharo.org/download


SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 1: Sunburst visualization with Roassal (2 pts)

Build a Sunburst visualization as shown in Figure 1 to analyze the test coverage of the Collection
class hierarchy. Each tile represents a specific class, and the size of the tile should represent its number
of lines of code. Moreover, tested classes (i.e., classes covered by tests) should be colored in green, while
other classes should remain in grey.

Hint: You can assume that test classes (i.e., classes that test other classes) use a name which closely
resembles the original name of the class they test; in general, they add only the postfix Test to the
original class name (e.g., ByteArray will become to ByteArrayTest).

Figure 1: Sunburst visualization built with Roassal

page 2 of 5



SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 2: Tree layout visualization with Roassal (2 pts)

Build a tree as shown in Figure 2 to highlight subclasses of the class Collection, which have again
subclasses and contain the string Array in their names. Circles should be used to represent the classes,
and the size of each circle should encode the number of methods of the represented class. Moreover,
classes that have subclasses and contain the string Array in their names must be colored green, whereas
other classes must remain grey.

Figure 2: Tree layout visualization built with Roassal

page 3 of 5



SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 3: Node-link visualization with Roassal (3 pts)

In this exercise you have to create a node-link visualization as shown in Figure 3 to analyze the class
dependencies between the Collection class hierarchy and the RSLayout class hierarchy. To this
end, you have to:

i) Visualize the classes of both hierarchies using circles (i.e., RSEllipse)

ii) Use the red (Collection) and green (RSLayout) color to highlight the classes of each hierarchy.

iii) Add edges to depict the class hierarchy, while using the RSClusterLayout

iv) Add blue Bézier edges to depict class dependencies using RSMultiBezierEdgeBuilder

v) Map the number of methods of each class to its circle size using RSNormalizer

Figure 3: Node-link visualization built with Roassal

page 4 of 5



SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 4: Discussion (3 pts)

Comment on the strenghts and limitations of each visualization you just created.

page 5 of 5


