
Oscar Nierstrasz

Smalltalk — a reflective language

Birds-eye view

Smalltalk is still today one of the few
fully reflective, fully dynamic, object-
oriented development environments.

We will see how a simple, uniform
object model enables live, dynamic,
interactive software development.

2

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

3

The origins of Smalltalk

4

Dynabook
project (1968)

Alto — Xerox
PARC (1973)

“simple things
should be very
simple, ... and,
complex things
should be very
possible”

Smalltalk was invented to support the development of a new
generation of graphical hardware devices. It was designed to be
object-oriented “from the ground up”.
The DynaBook project imagined a future handheld device that
could hold huge libraries of information. The Xerox PARC
Smalltalk project started by building graphics workstations, with
a view to a DynaBook-like device in the future.

http://esug.org/data/HistoricalDocuments/Smalltalk80/SmalltalkHistory.pdf

Excerpt from Alan Kay. Personal Computing. In “Meeting on 20
Years of Computing Science”, pp. 2-30, Instituto di Elaborazione
della Informazione, Pisa, Italy, 1975:

Smalltalk is a very simple, comprehensive way of simulating dynamic models.
The built-in primitives of most programming languages (such as numbers,
files, data structures, etc.), in Smalltalk, are actually simulations built from
more comprehensive ideas, including states-in-process, communication using
messages, and classes and instances.
Two of its basic goals are that simple things should be very simple, one should
not have to read a manual to do obvious things; and, complex things should be
very possible, comprehensive interactive systems should be easily
programmed without ‘hair or prayer’.

http://scgresources.unibe.ch/Literature/Smalltalk/Kay75a.pdf

What is interesting about Smalltalk?

> Everything is an object
> Everything happens by sending messages
> All the source code is there all the time
> You can’t lose code
> You can change everything
> You can change things without restarting the system
> The Debugger is your Friend

5

How does Smalltalk work?

Image

Changes
+

Virtual machine

Sources
+

6

A running Smalltalk systems consists of 4 parts:
1.The image contains all the objects (the “heap”)
2.The changes file logs all the source code changes you make (i.e., classes and

methods)
3.The virtual machine executes bytecode and manages objects in the image
4.The “sources file” contains all system source code of the base image

Note that the image and changes file must be kept together.
Although the VM and sources may be shared by multiple users,
nowadays all four files are commonly kept together within a
single “one-click” application.

Don’t panic!

7

New Smalltalkers often think they need to understand
all the details of a thing before they can use it.

Try to answer the question

 “How does this work?”
with
 “I don’t care”.

— Alan Knight. Smalltalk Guru

This is actually a paraphrase of:
Try not to care — Beginning Smalltalk programmers often have trouble
because they think they need to understand all the details of how a thing
works before they can use it. This means it takes quite a while before they can
master Transcript show: ‘Hello World’. One of the great leaps in
OO is to be able to answer the question “How does this work?” with “I don’t
care”.

http://alanknightsblog.blogspot.ch/2011/10/principles-of-oo-design-or-everything-i.html

Two things to remember ...

8

Everything is an object

Integers, Booleans, classes, methods, compiled methods, the
tools, you name it, they are all objects. When you finally
understand deeply that everything in the Smalltalk system is an
object, you start to think differently about how to interact with
that world.
Here’s a relevant fake quote from A Brief, Incomplete, and Mostly
Wrong History of Programming Languages:

1980 — Alan Kay creates Smalltalk and invents the term “object oriented.”
When asked what that means he replies, “Smalltalk programs are just
objects.” When asked what objects are made of he replies, “objects.” When
asked again he says “look, it's all objects all the way down. Until you reach
turtles.”

http://james-iry.blogspot.ch/2009/05/brief-incomplete-and-mostly-wrong.html

Everything happens by
sending messages

To understand why something happens, figure out what message
was sent. One consequence of this is that anything can be done
programmatically. You just have to figure out what objects are
involved and what messages they understand.

The Smalltalk object model

> Every object is an instance of one class
—... which is also an object
—Single inheritance

> Dynamic binding
—All variables are dynamically typed and bound

> State is private to objects
—“Protected” for subclasses
—Encapsulation boundary is the object, not the class!

> Methods are public
—“private” methods by convention only

11

Smalltalk Syntax

Every expression is a message send

> Unary messages

> Binary messages

> Keyword messages

12

5 factorial
Transcript cr

3 + 4
'hi', ' there'

Transcript show: 'hello world'
2 raisedTo: 32
'hello' at: 1 put: $y

Precedence

13

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

128

9 (!)
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

Literals and constants

14

Strings & Characters 'hello' $a

Numbers 1 3.14159

Symbols #yadayada

Arrays #(1 2 3)

Pseudo-variables self super

Constants true false

There are only 6 keywords in Smalltalk: self, super, true,
false, nil and thisContext. (This last one we will
encounter in the lecture on reflection.)

Blocks

15

1 to: 5 do: [:n | Transcript show: n; cr]

Block argument

Block

CascadeKeyword message

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

16

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

17

Task: analyze call graph logs from Javassist

18

|java.lang.String:org.clapper…HTMLUtil.convertCharacterEntities:java.lang.String
|STATIC_METHOD
|java.lang.String
|org.clapper…convertHTMLEntities:47
…

Called methodReturn type Formal argument types

Receiver class (or “static”)

Dynamic argument types
Call site (method + line #)

“Owner”

|java.lang.String:org.clapper.util.html.HTMLUtil.convertCharacterEntities:java.lang.String|STATIC_METHOD|
java.lang.String|org.clapper.util.html.test.HTMLEntitiesTest.convertHTMLEntities:47

|org.clapper.util.text.XStringBufBase:org.clapper.util.text.XStringBufBase.append:java.lang.String|
org.clapper.util.text.XStringBuffer|java.lang.String|org.clapper.util.html.HTMLUtil.convertCharacterEntities:240

|java.lang.Appendable:org.clapper.util.text.XStringBuffer.getBufferAsAppendable|org.clapper.util.text.XStringBuffer|
|org.clapper.util.text.XStringBufBase.append:469

|java.lang.String:org.clapper.util.html.HTMLUtil.convertEntity:java.lang.String|STATIC_METHOD|java.lang.String|
org.clapper.util.html.HTMLUtil.convertCharacterEntities:253

|java.util.ResourceBundle:org.clapper.util.html.HTMLUtil.getResourceBundle|STATIC_METHOD| |
org.clapper.util.html.HTMLUtil.convertEntity:424

|java.lang.String:org.clapper.util.html.HTMLUtil.textFromHTML:java.lang.String|STATIC_METHOD|java.lang.String|
org.clapper.util.html.test.HTMLEntitiesTest.textFromHTML:82

The data is generated from some Java code instrumented using
Javassist and written to a mysql log. This is a dump of the
resulting mysql table.

http://jboss-javassist.github.io/javassist/

How to reconstruct the model from the log?

19

CallGraph

Method

Call
Class

*

return
type

*

static
arguments

owner
1 1

caller

*callee

calls

dynamic
arguments

11

*

*

receiver

*

Our goal is to reconstruct from the run-time log an object-
oriented model of the call graph that can be queried to asnwer
questions about the calling relationships.
This UML class diagram summarized the information encoded in
the log:
A Method is implemented in a Class (its owner). The
arguments and return types are also statically-known classes.
A Call is a run-time activation of a specific Method (caller)
calling another Method (callee). The receiver and the arguments
are instances of specific classes (which may not be identical to
the owner or static arguments of the caller!).
There may be multiple Calls of the same Method.

Questions of interest

> How many calls are there?
> How many methods are called?
> How many classes are accessed?
> Which methods are static?
> Which methods are called most frequently?
> What is the depth of the call graph?
> Which methods are called by more than one caller?
> Which methods are potentially polymorphic? (multiple

receivers/implementations)
> What are the polymorphic call sites? (methods called with

different receiver/argument types)
> …

20

We would like to build up the model in such a way that such
questions can easily be posed as queries, i.e., expressions over the
objects representing the model.

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

21

Pharo — a modern Smalltalk

22

Pharo is an open-source evolution of Smalltalk-80.
Download it from:

http://pharo.org

To learn how to use Pharo, start with the open-source book,
Pharo by Example:

http://books.pharo.org

To learn about more advanced features, continue with Deep into
Pharo

Glamorous Toolkit — a moldable Smalltalk

23

Gt is a “moldable” development environment
built on Pharo with native windows, software
analysis support, and a visualization engine

GT offers a new graphical framework and a new set of tools for
software development on top of Pharo.

https://gtoolkit.com/download/

NB: Although GT is quite mature, it does not yet offer
replacements for all Pharo tools and features, so it is always
possible to escape the the “Morphic World” to access the
traditional tool set.

As an alternative to the following slides, you can download and
run a live version of the demo.
From a Gt Playground, run the following snippet to install the
demo examples:
Metacello new baseline: 'SMAForGt';  
 repository: 'github://onierstrasz/sma-examples/src';  
 load.

And run this snippet to start open the slideshow demos:
SMAForGt openSlideshowsOverview

The Playground

24

The Playground is
a place to evaluate
arbitrary Smalltalk
expressions

Evaluating an
expression opens
an “inspector” on
the result

You can select an expression in the Workspace and “do it”, “print
it”, “inspect it”, or simply “do it and go”.
NB: use the keyboard shortcuts instead of the menu or buttons!

Accessing a file from a Playground

25

We can open the file named “Calls.txt” and extract
its contents as a String object

We should encapsulate this data in a ClassGraph object

NB: first we must copy the file “Calls.txt” to the folder holding
the image.

Navigating to “impleMentors” or “seNders”

26

You can explore a method’s implementation in place. You
can also navigate to iMplementors or seNders by selecting
the name and typing <CMD>-M, respectively <CMD>-N.

Navigating to classes

27

You can browse the class of an object in its Meta tab

There are many ways to navigate to the class of an object.
From the inspector view of an object, you can browse its class in
the “Meta” tab. From there you can click on the “book” icon to
open a dedicated code browser.
You can also programmatically obtain the class of any object by
sending it the message class:
('Calls.txt' asFileReference) class

There is also a general-purpose search tool called Spotter, which
can search for classes, and just about anything else, which we will
see later.

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

28

Creating a new class

29

Object subclass: #CallGraph
 instanceVariableNames: ''
 classVariableNames: ''
 package: 'CallGraph'

To create a new class,
send a message to its
superclass in the
system browser

NB: A symbol

Or create the
class from the
Coder GUI.

Since everything happens by sending messages, it follows that
this is also true for creating a class. To create (or update) a class,
you simply send a message to its (already existing) superclass.
Note that since the new subclass may not exist yet, you must refer
to it using a symbol (i.e., #ClassGraph, not CallGraph).
In GT, you can also create new classes interactively, using the
playground or the class coder.

Class comments

30

NB: Be sure to write a class comment!

In general the idea in Smalltalk is to write literate code that does
not require additional comments. Nevertheless, it is very
important to write a class comment for every class you introduce,
and to keep the comment up-to-date.
The class comment is a good place to put some code snippets to
illustrate how to use the class, or to give pointers to class-side
methods to run examples.

Defining methods

31

CallGraph>>from: aString
 calls := Character cr split: aString

“Selector” (method name)

argument

method body
CallGraph>>calls
 ^ calls An accessor method

Convention to
indicate class name

Note that in the slides we usually prefix method names with the
class name (CallGraph>>from: aString) to make it clear
which class it belongs to. This is only a convention for slides,
books and papers. It is not needed in the browser because there
you can always see what class a method belongs to.

How many calls are there in the call graph?

32

| cg |
cg := CallGraph new from: 'Calls.txt' asFileReference contents.
cg calls size 2476

Let’s improve the instantiation interface

Factory methods and other “static” methods are
defined on the class side

33

CallGraph class>>fromFile: fileName
 ^ self new from: fileName asFileReference contents

(CallGraph fromFile: 'Calls.txt') calls size. 2476

Let’s turn this into a test!

Now we must define a class-side method. #fromFile: is a
message understood by the CallGraph class (as opposed it its
instance). We click on the “Class” button to switch to the class-
side methods.
Note that the method Callgraph class>>#fromFile:
must return an instance of CallGraph. Instead of evaluating
CallGraph new, we evaluate self new (self is anyway
this class, but we would also like the code to work for eventual
subclasses!).

Creating a simple test (in Pharo)

X

CallGraph class>>example
 ^ self new from: ‘|java.lang.String:…’

CallGraphTest>>testNumberOfCalls
 self assert: CallGraph example calls size equals: 5

TestCase subclass: #CallGraphTest
 instanceVariableNames: ''
 classVariableNames: ''
 package: 'CallGraph'

a 5-line excerpt from Calls.txt

Test classes inherit from TestCase and are usually named after
the class they test + “Test”.
You can run tests from the TestRunner tool, or directly from the
System Browser (by clicking the button next to a test method or a
test class).

Test examples in GT

34

Tests in GT consist
of methods
containing
assertions and
returning an
example object.
Example objects
can be composed.

The <gtExample> pragma allows example
methods to be run from the browser.

Instead of writing tests, we write examples, which we can inspect,
interact with, and compose to form scenarios, or more complex
objects.

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

35

Version control for Pharo and GT

36

Pharo and GT offer version control via git.

Git integration is provided by a library and tool called Iceberg. To
use it, you should adopt the convention that all source files are
saved in a subfolder called “src”.
You should also define a BaseLineOf… package containing a
script to simplify the loading of your packages.
See the SMA demo repo as an example.

https://github.com/onierstrasz/sma-examples

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

37

Modeling Calls, Methods and Classes

38

CallGraph>>from: aString
 calls := (Character cr split: aString)
 collect: [:each | self createCall: each]

'hello' collect: [:each | each uppercase] 'HELLO'

We want to build up a Call object for each line of the log

Let’s look at Collections first …

In order to build up the model, we need to create a Call object
from each line of the log file. To do this, we will map the
#createCall method to each line using the
#OrderedCollection>>collect: method.

Collections

39
Resist the temptation to program your own collections!

The Smalltalk collection hierarchy offers a mature library of
classes to manage various kinds of collections.
Hint: if you need to manage some kind of ordered list, you should
normally use the OrderedCollection class (i.e., rather than
Array or LinkedList).
NB: The diagram is an interactive visualization generated from
the actual class hierarchy using Mondrian:
GtMondrianDomainExamples new collectionHierarchy

The collection hierarchy is described in detail in chapter 9 of
Pharo by Example:

http://files.pharo.org/books/pharo-by-example/

Common messages

40

#(1 2 3 4) includes: 5
#(1 2 3 4) size
#(1 2 3 4) isEmpty
#(1 2 3 4) contains: [:some | some < 0]
#(1 2 3 4) do:
 [:each | Transcript show: each]
#(1 2 3 4) with: #(5 6 7 8)
 do: [:x : y | Transcript show: x+y; cr]
#(1 2 3 4) select: [:each | each odd]
#(1 2 3 4) reject: [:each | each odd]
#(1 2 3 4) detect: [:each | each odd]
#(1 2 3 4) collect: [:each | each even]
#(1 2 3 4) inject: 0
 into: [:sum :each | sum + each]

false
4
false
false

#(1 3)
#(2 4)
1
{false.true.false.true}

10

Most of these methods should be obvious:
•#select: and #reject return subcollections matching the block (or not)
•#detect: returns the first matching element or raises an error
•#collect: is more commonly knows as “map” — it returns a new

collection of the same size by mapping the argument block to each element
https://en.wikipedia.org/wiki/Map_(higher-order_function)

• #inject:into: is also known as “fold” — it takes an initial value and
iteratuvely applies the two-argument block to that value and each element in
the collection, producing, for example, a sum or a product
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Conditionals

41

All control constructs in
Smalltalk are implemented
by message passing

—No keywords
—Open, extensible
—Built up from Booleans and

Blocks

(11 factorial + 1) isPrime ifTrue: ['yes'] ifFalse: ['no']
'yes'

Object

ifTrue:ifFalse:
not
&

Boolean

ifTrue:ifFalse:
not
&

True

ifTrue:ifFalse:
not
&

False

Since everything is an object in Smalltalk, it should not come as a
surprise that Booleans are objects too. You might ask, “Well, how
do you implement Booleans if you don’t have them as
primitives?”
Actually the implementation closely follows the standard
encoding in the lambda calculus. A Boolean is simply an object
that can make a choice between two alternatives: true and false
just make opposite choices.

https://en.wikipedia.org/wiki/Church_encoding

The objects true and false are (unique) instances of the
classes True and False. Each implements methods like
#ifTrue:ifFalse: in its own way.
Have a look at the implementation of these methods in the system.

Creating Calls, Methods and Classes

42

CallGraph>>createCall: callString
 | fields callee |
 fields := $| split: callString.
 self assert: fields size = 5.
 self assert: (fields at: 1) size = 0.
 callee := self getMethod: (fields at: 2).
 ^ Call new callee: callee
 "TODO -- handle the remaining fields!"

temporary (local) variables

a comment

assertions (not tests)

CallGraph>>initialize
 super initialize.
 methods := Dictionary new

CallGraph>>getMethod: signature
 | fields methodName |
 fields := $: split: signature.
 methodName := fields at: 2.
 ^ methods at: signature
 ifAbsentPut: [JMethod new name: methodName]

cache the methods!

CallGraph>>methods
 ^ methods

To create the call graph, we must split each line of the log into its
individual fields by the $| character.
Each Call object stores a reference to its callee, a JMethod
object representing the called Java method. Since each method
may be called multiple times, but we only want to have a unique
JMethod instance representing that method, we cache these
objects in a dictionary indexed by the method signature (field 2 of
the log).

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

43

The debugger is your friend!

44

(CallGraph fromFile: 'Calls.txt') methods size.

Missing methods can
be generated without
leaving the debugger

When we evaluate this snippet, it turns out that we have forgotten
to implement some methods. (In this case #JMethod>>name:)
The Debugger window pops up and offers us the possibility to
create the missing method.
Aside: this offers you an effective way to follow TDD (test-driven
development) in Pharo — implement some tests, then run them,
and use the Debugger to prompt you to implement the missing
classes and methods.
From the debugger we can generate both JMethod>>name:
and Call>>callee: and proceed with execution!

Using the debugger

45

The debugger reveals the
false assumption that each
log line is a complete entry

The standard Pharo debugger shows you the run-time stack of
currently executing methods. Here we see that an assertion failed
in the #createCall: method. The inspector window below
shows that the given fields collection is unexpectedly empty.

Roadmap

> Smalltalk Basics
> Demo: modeling Call Graphs

—The call graph model
—Pharo and Glamorous Toolkit
—Implementing the CallGraph class
—Version control in Pharo
—Modeling Calls, Methods and Classes
—The Debugger is your Friend!
—Expressing queries

46

Duck Typing in Smalltalk

47

CallGraph>>from: aString
calls := ((Character cr split: aString)

select: #notEmpty)
collect: [:each | self createCall: each]

CallGraph>>from: aString
calls := ((Character cr split: aString)

select: [:each | each notEmpty])
collect: [:each | self createCall: each]

Behaves like:

since symbols also understand value:

“Duck typing” refers to one object masquerading as another by
implementing its interface. (“If it quacks like a duck, it must be a
duck”.)

https://en.wikipedia.org/wiki/Duck_test

Here we are using a symbol (#notEmpty) where we would
normally expect a one-argument block. This works simply
because the Symbol class implements the #value: method
used to evaluate a block.
Duck typing is unique to dynamically-typed languages like
Smalltalk and Ruby. In a statically-typed language like Java you
would achieve the same effect by defining an interface for objects
that can be evaluated with an argument (e.g.,
IOneArgumentBlock) and ensuring that the relevant classes
(Block, Symbol) implement that interface.

Number of methods

48

(CallGraph fromFile: 'Calls.txt') methods size. 168

CallGraphTest>>testNumberOfMethods
 self assert: CallGraph example methods size equals: 5

To do …

> Model classes (introduce JClass class)
> Model argument and return types of methods
> Track which methods are static
> Determine which methods are polymorphic

49

To continue from here we introduce a class JClass to represent
all the Java classes we encounter as owners of methods, or as
argument and return types. ('STATIC_METHOD' is a dummy
class to represent static methods.)
We extend CallGraph>>#createCall: and
#CallGraph>>#getMethod: to track classes as well as
methods. CallGraph>>#getClass: caches the JClass
instances with a dictionary, just as we did with #getMethod.
We can recognize static methods by checking if their owner is
static. A polymorphic method is one that takes arguments of
different types, so we look at the set of arguments from the calls
and check if that set is greater than 1.

Queries

50

(CallGraph fromFile: 'Calls.txt') methods size. 168

(CallGraph fromFile: 'Calls.txt') classes size. 67

((CallGraph fromFile: 'Calls.txt') methods
select: [:m | m calls size > 1]) size. 141

((CallGraph fromFile: 'Calls.txt') methods
select: #isPolymorphic) size. 10

Navigating the CallGraph

51

The Playground offers a convenient interface
to navigate through our CallGraph hierarchy.

What you should know!

> What’s the difference between a method, a selector and a
message?

> What are categories and protocols? What are they for?
> How do you create a new class in Smalltalk?
> What’s the difference between CallGraph and
CallGraph class?

> What are “class side” methods for?
> How is a block like a lambda?
> What’s the difference between a string and a symbol?

52

Can you answer these questions?

> Can a class access the fields of one of its instances?
> Can you name something that is not an object in

Smalltalk?
> What happens to existing instances of a class if you add

new fields at run time?
> What will happen if you change the implementation of

core classes (like Booleans or Strings)?
> What’s the difference between self and super?

53

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

