
Oscar Nierstrasz

Reflection

Selected material by Marcus Denker and Stéphane Ducasse

Metaobjects

Objects intercession
(reflection)

introspection
(reflection)

reification

Birds-eye view

2

Reflection allows you to
both examine and alter the
meta-objects of a system.

Using reflection to modify
a running system requires
some care.

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

3

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

4

Why we need reflection

5

As a programming language becomes higher and higher
level, its implementation in terms of underlying machine
involves more and more tradeoffs, on the part of the
implementor, about what cases to optimize at the expense
of what other cases. … the ability to cleanly integrate
something outside of the language’s scope becomes more
and more limited.

— Kiczales, 1993

Adding new features to a high-level language is only feasible if
the language is “opened up” with the help of reflection. A “meta-
object protocol” is a kind of reflection API.

Gregor Kiczales, et al., “Metaobject protocols: Why we want them and what
else they can do,” in Object-Oriented Programming: the CLOS Perspective,
pp. 101-118, MIT Press, 1993.
http://scgresources.unibe.ch/Literature/SMA/Kicz93b-MOPs.pdf

What are Reflection and Reification? (review)

> Reflection is the ability of a program to manipulate as
data something representing the state of the program
during its own execution.
—Introspection is the ability for a program to observe and therefore

reason about its own state.
—Intercession is the ability for a program to modify its own execution

state or alter its own interpretation or meaning.

> Reification is the mechanism for encoding execution state
as data

— Bobrow, Gabriel & White, 1993

6

In order to “reflect” on one’s own behaviour, one must have a
model of it, that is, one must make it concrete, or “reify” it.
Most programming languages provide some reflective features to
allow you to query a running system. This is known as
“introspection”. Few languages allow you to change the running
system through reflection; this is intercession.

Daniel G. Bobrow, Richard P. Gabriel, and J.L. White. CLOS in Context —
The Shape of the Design. In A. Paepcke (Ed.), Object-Oriented Programming:
the CLOS perspective, p. 29—61, MIT Press,
http://scgresources.unibe.ch/Literature/SMA/Bobr93a-CLOS.pdf

Structural and behavioral reflection

> Structural reflection lets you reify and reflect on
—the program currently executed
—its abstract data types.

> Behavioral reflection lets you reify and reflect on
—the language semantics and implementation (processor)
—the data and implementation of the run-time system.

Malenfant et al., A Tutorial on Behavioral
Reflection and its Implementation, 1996

7

http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/malenfant/ref96/footnode.html
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/malenfant/ref96/footnode.html

Reflection and Reification (review)

8

Metaobjects

Objects intercession
(reflection)

introspection
(reflection)

reification

To reflect on the structure or behaviour of a system we must reify
concepts from the metamodel (i.e., from the implementation) to
make them available to the run time system as ordinary “objects”.
We can then examine or “introspect” these objects.
If we can change these objects and reflect these changes back to
the meta level, then we are performing intercession.

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

9

Metaprogramming in Programming Languages

10

> The meta-language and the language can be different:
—Scheme and an OO language

> The meta-language and the language can be same:
—Smalltalk, CLOS
—In such a case this is a metacircular architecture

Introspection in Java

// Without introspection
World world = new World();
world.hello();

// With introspection
Class cls = Class.forName("World");
Method method = cls.getMethod("hello", null);
method.invoke(cls.newInstance(), null);

11

In Java we can reify classes, inspect them, and invoke certain
services to create instances or call methods, but we cannot
compile new classes or methods. (To do so requires class loader
magic.)

Reflection in Smalltalk

12

“Hello World” with reflection

and without

In Smalltalk we can create classes and compile methods at run
time simply by interacting with reified classes. (In fact, we must,
since there is no other way to compile new code.)

Three approaches

1. Tower of meta-circular interpreters
2. Reflective languages
3. Open implementation

13

1. Tower of meta-circular interpreters

> Each level interprets and controls the next
—3-Lisp, Scheme

> “Turtles all the way down” [up]
—In practice, levels are reified on-demand

14

In this approach there is an infinite tower of interpreters, each
interpreting the next layer below. In practice, of course, this tower
does not really exist, but only springs into existence on request —
if you need to do something at a given level, then that level will
be reified on demand.

2. Reflective languages

15

> Meta-entities control base entities
—Smalltalk, Self
—Language is written in itself

aSnakeSquare
«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Class

ClassDescription

Behavior

Metaclass

Metaclass class

ClassDescription class

Class class

Behavior class

Smalltalk adopts the second approach: the language is reflective,
and all meta-entities are reified and can be accessed at the base
level. In contrast to the previous approach there is only one level
of interpretation.

3. Open implementation

16

> Meta-object protocols provide an interface to access and
modify the implementation and semantics of a language
—CLOS

> More efficient, less expressive than infinite towers

The Common Lisp Object System (CLOS) instead offers a
dedicated API, known as a Meta-Object Protocol (MOP). Meta-
objects are responsible for for controlling base entities.
Note that while the metaclass hierarchy of Smalltalk essentially
serves as a MOP, in general a MOP does not need to reify
metamodel entities.

https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/The_Art_of_the_Metaobject_Protocol

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

17

The Essence of a Class

1. A format (e.g. a set of instance variables)
2. A method dictionary
3. A superclass

18

Classes serve three purposes:
1.to define the structure of instances (format)
2.to serve as a repository of behavior (method dictionary)
3.to support a class hierarchy (superclass)

Behavior >> initialize

19

initialize
"moved here from the class side's #new"
super initialize.
self superclass: Object.
"no longer sending any messages, some of them crash the VM"
self methodDict: self emptyMethodDictionary.
self setFormat: Object format.
self traitComposition: nil.
self users: IdentitySet new

NB: not to be confused with Behavior>>new!

In Pharo:

Note that this is the default initialization method for all entities
with behaviour, in particular classes and metaclasses.
The superclass of a new class is initially set to be Object, and
then later redefined to its actual superclass.
The initial method dictionary is empty. The “format” is an integer
that encodes the object layout.
Aside: This method actually comes from the trait TBehavior,
but we will not discuss traits for now. (Traits are reusable sets of
methods that can be shared across classes independently of the
inheritance hierarchy.)

The Essence of an Object

1. Objects are references (“pointers”)
2. Objects contain values (references to other objects)
3. Objects have a class (reference to a class)

> Can be special:
—SmallInteger
—Indexed rather than referenced values
—Compact classes (CompiledMethod, Array …)

20

Most objects in Smalltalk consist of a set of named instance
variables, which are references to other objects. Special cases are
SmallIntegers, which occupy 31 bits (the last bit is used to
distinguish SmallIntegers from object references), and
indexed objects, which contain indexed rather than named
properties.

Metaobjects vs metaclasses

> Need distinction between metaclass and metaobject!
—A metaclass is a class whose instances are classes
—A metaobject is an object that describes or manipulates other

objects
– Different metaobjects can control different aspects of objects

21

Some MetaObjects

> Structure:
— Behavior, ClassDescription, Class, Metaclass, ClassBuilder

> Semantics:
— Compiler, Decompiler, IRBuilder

> Behavior:
— CompiledMethod, BlockContext, Message, Exception

> ControlState:
— BlockContext, Process, ProcessorScheduler

> Resources:
— WeakArray

> Naming:
— SystemDictionary

> Libraries:
— MethodDictionary, ClassOrganizer

22

Meta-Operations

23

“Meta-operations are operations that
provide information about an object as
opposed to information directly
contained by the object ...They permit
things to be done that are not normally
possible”

Inside Smalltalk

Wilf LaLonde and John Pugh. Inside Smalltalk: Volume 1,
Prentice Hall, 1990. p. 195

http://sdmeta.gforge.inria.fr/FreeBooks/InsideST/InsideSmalltalk.pdf

Accessing state

24

pt := 10@3.
pt instVarNamed: 'x'.
pt instVarNamed: 'x' put: 33.
pt

10

33@3

> Object>>instVarNamed: aString
> Object>>instVarNamed: aString put: anObject
> Object>>instVarAt: aNumber
> Object>>instVarAt: aNumber put: anObject

Note how reflective operations violate encapsulation. Even
though instance variables are “private” in Smalltalk, we can
violate this privacy by explicitly reading and writing named
instance variables of arbitrary objects.

Accessing meta-information

25

'hello' class
(10@3) class
Smalltalk class
Class class
Class class class
Class class class class

'hello' identityHash
Object identityHash
5 identityHash

ByteString
Point
SmalltalkImage
Class class
Metaclass
Metaclass class

2664
2274
5

> Object>>class
> Object>>identityHash

Changes

> Object>>primitiveChangeClassTo: anObject
—both classes should have the same format, i.e., the same physical

structure of their instances
– “Not for casual use”

> Object>>become: anotherObject
—Swap the object references of the receiver and the argument.
—All variables in the entire system that used to point to the receiver

now point to the argument, and vice-versa.
—Fails if either object is a SmallInteger

> Object>>becomeForward: anotherObject
—Like become: but only in one direction.

26

Implementing Instance Specific Methods

27

ReflectionTest>>testPrimitiveChangeClassTo
| anon anObject |
anon := Class new. "NB: an anonymous class"
anon superclass: Object.
anon setFormat: Object format.

anObject := Object new.
anObject primitiveChangeClassTo: anon new.
anon compile: 'thisIsATest ^ 2'.

self assert: anObject thisIsATest equals: 2.
self should: [Object new thisIsATest]

raise: MessageNotUnderstood

Here we create an anonymous class anon as an instance of
Class, and we explicitly set its superclass and format.
We manually set the class of anObject to be anon (note that
Object>>primitiveChangeClassTo: takes an object,
not a class as its argument), and we dynamically compile the
method thisIsATest.

become:

28

> Swap all the references from one object to the other and
back (symmetric)

ReflectionTest>>testBecome
 | pt1 pt2 pt3 |

 pt1 := 0@0.
 pt2 := pt1.
 pt3 := 100@100.
 pt1 become: pt3.

 self assert: pt1 equals: (100@100).
 self assert: pt1 == pt2.
 self assert: pt3 equals: (0@0).

becomeForward:

29

> Swap all the references from one object to the other
(asymmetric)

ReflectionTest>>testBecomeForward
 | pt1 pt2 pt3 |

 pt1 := 0@0.
 pt2 := pt1.
 pt3 := 100@100.
 pt1 becomeForward: pt3.

 self assert: pt1 equals: (100@100).
 self assert: pt1 == pt2.
 self assert: pt2 == pt3.

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

30

Basic code metrics

31

Collection allSuperclasses size.
Collection allSelectors size.
Collection allInstVarNames size.
Collection selectors size.
Collection instVarNames size.
Collection subclasses size.
Collection allSubclasses size.
Collection linesOfCode.

2
622
0
199
0
14
96
1077

Many code metrics are directly computed by methods of classes.
Most of these methods are defined in Behavior.

SystemNavigation (Pharo)

32

SystemNavigation default browseAllImplementorsOf: #,

The class SystemNavigation supports a gamut of standard
useful queries. Evaluate SystemNavigation default to
get an instance.

A useful method to search for methods containing a particular
source code snippet is:
SystemNavigation>>allMethodsWithSourceString:matchCase:

Browse SystemNavigation to find other useful queries.

For this example, there is a convenience method of
CompiledMethod to do the same thing:
#, implementors

Gt search filters

33

In Gt, queries are expressed with the help of composable filters

Recap: Classes are objects too

34

> Object
—Root of inheritance
—Default Behavior
—Minimal Behavior

> Behavior
—Essence of a class
—Format, methodDict, superclass

> ClassDescription
—Human representation and organization

> Class
—Normal and anonymous classes

> Metaclass
—Sole instance

Object

Class

ClassDescription

Behaviour

Metaclass

Classes are Holders of CompiledMethods

35

new
compile:
selectors
superclass

superclass
format
layout

Behavior

instanceVariables
ClassDescription

subclass:instanceVariableNames:

name
category
subclasses

Class

at:
at:put:
keys
removeKey:ifAbsent:

MethodDictionary

sendsToSuper
methodReference
getSource
ast
valueWithReceiver: arguments:
…

CompiledMethod

methodClass

*

methodDict

MetaClass

isMethod
sendNodes
…

RBMethodNode

isUnary
isBinary
isKeyword
isSuperSend
…

RBMessageNode

ast

This simple metamodel allows us to navigate through the system.
If we inspect the class OrderedCollection, we can navigate
to its method dictionary and to each of its CompiledMethod
instances. Of course we can also navigate programmatically.
We can also navigate to the AST nodes (RBNode…) if we require
more detailed information about the source code.
Note that there is a method >> defined in Behavior that returns
a compiled method, so, for example
OrderedCollection>>#add: will evaluate to the
corresponding CompiledMethod object.
Given the metamodel, how is do you think >> is implemented?

Invoking a message by its name

36

> Asks an object to execute a message
—Normal method lookup is performed

Object>>perform: aSymbol
Object>>perform: aSymbol with: arg

5 factorial
5 perform: #factorial

120
120

Executing a compiled method

37

CompiledMethod>>valueWithReceiver:arguments:

(SmallInteger>>#factorial)
 valueWithReceiver: 5
 arguments: #()

(Integer>>#factorial)
 valueWithReceiver: 5
 arguments: #()

Error: key not found
120

No lookup is performed!

Example: Finding super-sends within a hierarchy

38

(Collection withAllSubclasses flatCollect: #methodDict)
select: #sendsToSuper

Collection>>#flatCollect: will collect a list of lists,
and then flatten the result one level. Here we collect the method
dictionaries of all the subclasses of Collection and flatten
them, yielding a collection of CompiledMethod instances.
(The method dictionaries will behave like sets of compiled
methods in the flattening.)
Note that #methodDict and #sendsToSuper are duck-
typed, behaving like query blocks.

Example: Finding super-sends to other methods

39

(CompiledMethod allInstances select: #sendsToSuper)
 select: [:m | (m sendNodes select:
 [:send | send isSuperSend
 and: [m selector ~= send selector]])
 isNotEmpty]

First we select all methods that contain super sends using
CompiledMethod>>#sendToSuper. Then we need more
detailed information than the compiled method can provide, so
we navigate to the message nodes of the AST using
#sendNodes. We now select only the super send nodes, and
then extract the subset where the message sent to super does not
match the selector of the method itself. Finally inspect those
methods for which this set is not empty.

Aside: The snippet CompiledMethod allInstances will
also include any code evaluated in a Playground, but not yet
garbage-collected. If you want to be sure that you only query the
compiled methods belonging to classes, you can use the prepared
query:
SystemNavigation default allMethods

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

40

Accessing the run-time stack

41

> The execution stack can be reified and manipulated on
demand

— thisContext is a pseudo-variable that gives access to the stack

First start a Playground and evaluate:
thisContext inspect. self halt

An inspector and a debugger window will open. In the inspector
run:
self stack inspect

This will open a second inspector on the stack, showing a view
similar to that of the debugger (select the Source tab when you
select a Context object in the stack inspector).

What happens when a method is executed?

42

InstructionStream variableSubclass: #Context
instanceVariableNames: 'stackp method closureOrNil receiver'
classVariableNames: 'PrimitiveFailToken QuickStep

SpecialPrimitiveSimulators TryNamedPrimitiveTemplateMethod'
package: 'Kernel-Methods'

> We need space for:
—The temporary variables
—Remembering where to return to

> Everything is an Object!
—So: we model this space with objects
—Class Context

NB: In earlier versions of Pharo this class was called
MethodContext. It inherits variables pc and sender from its
superclass, InstructionStream.

Context

> Context holds all state associated with the execution of
a CompiledMethod
—pc: the program counter (from InstructionStream)
—method: the CompiledMethod itself
—receiver: the receiver object
—sender: the previous Context or BlockContext (from
InstructionStream)
– The chain of senders is a stack
– It grows and shrinks on activation and return

43

Contextual halting

44

> You can’t put a halt in methods that are called often
—e.g., OrderedCollection>>add:
—Idea: only halt if called from a method with a certain name

NB: Object>>haltIf: in Pharo is similar

HaltDemo>>haltIfCalledFrom: aSelector
| context |
context := thisContext.
"walk up the stack looking for a Context with this selector"
[context sender isNil]

whileFalse: [context := context sender.
context selector = aSelector

ifTrue: [Halt signal]]

A conditional breakpoint is one that triggers the debugger only if
some condition holds. In this case we only want to halt if we are
being called from some specific method, possibly indirectly. To
determine this we need to search through the call stack for a
context object corresponding to the given selector.
NB: Pharo provides conditional breakpoints that essentially work
this way.

HaltDemo

45

HaltDemo>>foo
 self haltIfCalledFrom: #bar.
 ^ 'foo'

HaltDemo>>bar
 ^ (self foo), 'bar'

'foo'HaltDemo new foo

HaltDemo new bar

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

46

Overriding doesNotUnderstand:

> Introduce a Minimal Object
—Wraps a normal object
—Does not understand very much
—Redefines doesNotUnderstand:
—Superclass is nil or ProtoObject
—Uses become: to substitute the object to control

47

The idea of a “minimal object” is that it implements almost no
methods, except for doesNotUnderstand:. Whenever it is
sent any message, it will be reified and trapped by
doesNotUnderstand:, at which point you do anything you
like, for example, dynamically compile or load a default method,
forward the message to another object, or fire up a different tool
than the debugger.
A problem in Pharo (and most Smalltalk implementations) is that
Object implements many methods. A minimal object should
therefore not inherit from Object but from nil, or in Pharo,
from ProtoObject.
In order to use a minimal object as a proxy for another object, we
will use become:.

Minimal Object at Work

48

MinimalObject

fooBar

Subject

doesNotUnderstand: #fooBar
fooBar

value

Here we see a minimal object used as a proxy or “wrapper” for
another object. The message sent is not understood, causing it to
be trapped. The minimal object then does its “proxy stuff” (such
as logging), and forwards the message to the wrapped subject.

Logging message sends with a minimal object

49

ProtoObject subclass: #LoggingProxy
instanceVariableNames: 'subject invocationCount'
classVariableNames: ''
package: 'SMA-Reflection'

LoggingProxy>>doesNotUnderstand: aMessage
Transcript

show: 'performing ' , aMessage printString;
cr.

invocationCount := invocationCount + 1.
^ aMessage sendTo: subject

Message>>sendTo: receiver
 ^ receiver perform: selector withArguments: args

LoggingProxy class>>for: aSubject
^ self new become: aSubject

LoggingProxy>>initialize
 invocationCount := 0.
 subject := self.

An initial LoggingProxy has itself as its subject. When we
create an instance with
LoggingProxy for: aSubject

the references to the proxy and its subject are swapped, and
subject will correctly refer to the subject, whereas any object
that previously referred to the subject now refers to the proxy.

Using become: to install a proxy

50

point := 1@2.
LoggingProxy for: point.
point + point.
point invocationCount 5

Computing the sum of two points causes the proxy to increase the
invocation count.

Limitations

> self problem
—Messages sent by the object to itself are not trapped!

> Class control is impossible
—Can’t swap classes

> Interpretation of minimal protocol
—What to do with messages that are understood by both the

MinimalObject and its subject?

51

There are several shortcomings of proxies implemented as
minimal objects.
First, self-sends are not trapped. See
LoggingProxyTest>>#testSelf for a demonstration.
Although Point>>#rectangle: does two self-sends, these
are not captured by the proxy.
Second, we can only wrap individual objects, not classes. We
cannot use the logging proxy to log all messages sent to all
instances of Point, without individually wrapping every Point
object!
Finally, even though a minimal object has few methods, there
may still be some conflicts with messages understood by the
subject.

Using minimal objects to dynamically generate
code

52

DynamicAccessors>>doesNotUnderstand: aMessage
 | messageName |
 messageName := aMessage selector asString.
 (self class instVarNames includes: messageName)
 ifTrue: [self class compile:
 messageName, String cr , ' ^ ', messageName.
 ^ aMessage sendTo: self].
 super doesNotUnderstand: aMessage

A minimal object can be used to dynamically
generate or lazily load code that does not yet exist.

Here an accessor is generated if the ivar exists but no getter is
defined. The same technique could be used, for example, to lazily
load and compile code from a remote repository.

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

53

Message control with anonymous classes

> Create an anonymous class
—Instance of Behavior
—Define controlling methods
—Interpose it between the instance and its class

54

Selective control

55

Set

set1

«instance-of»

set2

«anonymous»

:MethodDictionary

:MethodDictionary

add:

add:

A controlled object

Not controlled

In this scenario we introduce an anonymous subclass of Set that
overrides the method #add:. The object set1 is a normal
instance of Set, while set2 is an instance of the anonymous
subclass. When we send the message #add: to set2, it is
intercepted by the anonymous class, while all other messages are
handled by Set as before.

anonClass := Class new.
anonClass superclass: Set;
 setFormat: Set format.

anonClass compile:
 'add: anObject
 Transcript show: ''adding '', anObject printString; cr.
 ^ super add: anObject'.

set := Set new.
set add: 1.

set primitiveChangeClassTo: anonClass basicNew.
set add: 2.

Anonymous class in Pharo

56

Just for fun, inspect the anonymous class and navigate to the
source code you have compiled. Note that although you can
inspect the class (since it is an object), you cannot browse it.

Evaluation

> Either instance-based or group-based
> Selective control
> No self-send problem
> Good performance
> Transparent to the user
> Requires a bit of compilation

57

Roadmap

> Reification and reflection
> Reflection in Programming Languages
> Introspection

—Inspecting objects
—Querying code
—Accessing run-time contexts

> Intercession
—Overriding doesNotUnderstand:
—Anonymous classes
—Method wrappers

58

Method Substitution

First approach:
> Add methods with mangled names

—but the user can see them

Second approach:
> Wrap the methods without polluting the interface

—replace the method by an object that implements #run:with:in:

59

MethodWrapper before and after methods

60

A MethodWrapper replaces an original CompiledMethod in
the method dictionary of a class and wraps it by
performing some before and after actions.

IntegeraNumber :MethodDictionary

methodWrapperfactorial:CompiledMethod

run: aSelector with: anArray in: aReceiver
 ...
 ^ aReceiver withArgs: anArray executeMethod: method

#factorial

The Smalltalk VM expects that objects in a method dictionary are
all either instances of CompiledMethod, or implement
#run:with:in:. The arguments to #run:with:in are (1)
the message selector, (2) the arguments array, and (3) the receiver.
Method wrappers exploit this to replace a compiled method with
a wrapper implementing #run:with:in. The method wrapper
can perform any action before or after evaluating the original
compiled method (such as logging).

A LoggingMethodWrapper

61

LoggingMethodWrapper>>initializeOn: aCompiledMethod
 method := aCompiledMethod.
 invocationCount := 0

LoggingMethodWrapper>>install
 method methodClass methodDictionary
 at: method selector
 put: self

LoggingMethodWrapper>>run: aSelector with: anArray in: aReceiver
 invocationCount := invocationCount + 1.
 ^ aReceiver withArgs: anArray executeMethod: method

NB: Duck-typing also requires (empty) flushCache,
methodClass:, and selector: methods

uninstall is analogous …

LoggingMethodWrapper class>>on: aCompiledMethod
^ self new initializeOn: aCompiledMethod

Installing a LoggingMethodWrapper

62

logger := LoggingMethodWrapper on: Integer>>#factorial.

logger invocationCount.
5 factorial.
logger invocationCount.

logger install.
[5 factorial] ensure: [logger uninstall].
logger invocationCount.

10 factorial.
logger invocationCount.

0

0

6

6

Evaluation

> Class based:
—all instances are controlled

> Only known messages intercepted
> A single method can be controlled
> Does not require compilation for installation/removal

63

What you should know!

> What is the difference between introspection and
intercession?

> What is the difference between structural and behavioral
reflection?

> What is an object? What is a class?
> What is the difference between performing a message

send and simply evaluating a method looked up in a
MethodDictionary?

> In what way does thisContext represent the run-time
stack?

> What different techniques can you use to intercept and
control message sends?

64

Can you answer these questions?

> What form of “reflection” is supported by Java?
> What can you do with a metacircular architecture?
> Why are Behavior and Class different classes?
> What is the class ProtoObject good for?
> Why is it not possible to become: a SmallInteger?
> What happens to the stack returned by thisContext if

you proceed from the self halt?
> What is the metaclass of an anonymous class?
> How would you find all duck-typed methods in the image?

65

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

