
Oscar Nierstrasz

Software Metrics and Problem Detection

Selected material by Mircea Lungu

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-Based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

2

Measurements

3

A measurement is a
mapping from a domain to a
range using mapping rules

A measure is a numerical
value or a symbol assigned
during mapping

In Software:
measures = “metrics” Measurement owes its existence to Earth;

Estimation of quantity to Measurement;
Calculation to Estimation of quantity;
Balancing of chances to Calculation;
and Victory to Balancing of chances.

Measurements help you to reason about things using a simplified
model rather than the things themselves. (Will these boxes fit in
my car?)

https://en.wikipedia.org/wiki/Software_metric

The quotation is from Sun Tzu’s “Art of War.” Sun Tzu claims
that measurement is the first step towards victory.

https://en.wikipedia.org/wiki/The_Art_of_War

The Measurement Process

4

The Goal-Question-Metric model
proposes three steps to finding the
correct metrics.

(Victor Basili)

Targets without
clear goals will

not achieve their
goals clearly.

Gilb’s
Principle

1) Establish the goals of your maintenance
or development project.

2) Derive, for each goal, questions that
allow you to verify its accomplishment.

3) Find what should be measured in order
to quantify the answer to the questions.

The Goal-Question-Metric method was introduced by Victor
Basili. It proposes three steps for finding the correct metrics that
should be collected during a program.
The GQM model seems too simple to deserve to be called a
model. Still, its usefulness becomes clear when realizing that
many metrics programs start not with a goal in mind, but with
measuring what is easy to measure and end up with bunch of
unrelated and non-conclusive measurements.
This situation was addressed also by Kybourg: “If you have no
viable theory in which X enters, you have very little motivation to
generate a measure of X”.

https://en.wikipedia.org/wiki/GQM

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-Based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

5

Size Measures

6

> LOC
> NOM
> NOA
> NOC
> NOP
> ... etc.

The graphic is a polymetric view that maps metrics to simple
visualizations. This is a “System Complexity View” showing an
inheritance hierarchy with NOM (# of methods) mapped to the
height of each class node, NOA (# attributes) to the width, and
LOC to the colour (black indicates the most LOC).

Many object-oriented metrics were first defined in the early 90s.
See, for example: Chidamber, Kemerer, A Metrics Suite for
Object Oriented Design. IEEE TSE, 1994.

http://dx.doi.org/10.1109/32.295895
http://scgresources.unibe.ch/Literature/SMA/Chid94a-OOMetrics.pdf

Cyclomatic Complexity (CYCLO)

7

The number of
independent linear
paths through a
program.
(McCabe ’77)

+ Measures minimum
effort for testing

Cyclomatic Complexity is one of the best-known measures of
complexity, which equates complexity with control flow: the
more paths through a piece of code, the more complex it is
considered to be. This is especially useful for measuring test
coverage. (Tests should cover all paths through a program.)
CC can be computed by representing control flow as a directed
graph, and computing:

CC = E - N + 2
where E = # edges and N = # nodes
https://en.wikipedia.org/wiki/Cyclomatic_complexity

Weighted Methods per Class (WMC)

8

Synthesis

The complexity of a class by summing the complexity of its
methods, usually using CYCLO.
(Chidamber & Kemerer ’94)

+ A proxy for the time and effort required to maintain a class

Intuition: the larger the complexity of a class, the more difficult
its maintenance.

Depth of Inheritance Tree (DIT)

9

The maximum depth level of
a class in a hierarchy.
(Chidamber & Kemerer ’94)

+ Inheritance depth is a
good proxy for complexity

Access To Foreign Data (ATFD)

10

ATFD counts how many
attributes from other classes
are accessed directly from a
given class.
(Lanza & Marinescu ’06)

+ ATFD summarizes the
interaction of a class with its
environment

The visualizations are class blueprints. They show five categories
of methods and attributes of a single class and their calling/
accessing relations. In the first column at the left are constructors,
followed by public methods, internal methods (protected or
private), accessors, and finally attributes.
Here we see that the weightAndPlaceClasses and
layout methods of ClassDiagramLayouter are very
large, and use many accessors and attributes of
ClassDiagramNode. The latter has little behavior of its own.

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-Based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

11

Coupling Between Object Classes (CBO)

12

CBO for a class is the
number of other classes to
which it is coupled.
(Chidamber & Kemerer ’94)

+ Meant to assess modular
design and reuse

The concept of coupling was introduced in a 1974 article by
Stevens, Myers, and Constantine. Structured Design. IBM
Systems Journal, 1974

http://scgresources.unibe.ch/Literature/SMA/Stev74a-StructuredDesign.pdf
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

Here we see that the class Project has both large fan-in (clients
using it) and fan-out (classes it is a client of), so it is highly
coupled to much of the system.

Tight Class Cohesion (TCC)

TCC = 4 / 10 = 0.4

13

TCC counts the relative
number of method-pairs
that access attributes of
the class in common.
(Bieman & Kang, 95)

+ Can lead to
improvement action

A class is considered to be cohesive using TCC if its methods
access many of the same attributes. TCC counts the pairs of
methods that access a common attribute.

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

14

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

15

16

Pattern: Study the Exceptional Entities

Problem
—How can you quickly gain insight into complex software?

Solution
—Measure software entities and study the anomalous ones

Steps
—Use simple metrics
—Visualize metrics to get an overview
—Browse the code to get insight into the anomalies

This pattern is from the open-source book, “Object-Oriented
Reengineering Patterns”. Like design patterns, reengineering
patterns encode knowledge mined from experience with practical
problems in real software systems. Instead of encoding design
experience, however, these patterns express how to reverse
engineer and reengineer legacy software systems.
This particular pattern is useful when you want to obtain an initial
overview of a complex object-oriented software system. Since the
code base may be very large, it is not feasible to read even a small
portion of the code. Instead, by applying simple metrics and
visualizing the results, your attention may be drawn to anomalous
outliers (i.e., exceptional entities) that will tell you interesting
things about the system.

http://scg.unibe.ch/download/oorp/

The Overview Pyramid provides a metrics
overview.

Size Communication

Inheritance

17

The Overview Pyramid summarizes several common metrics in a
single diagram, indicating whether metric values are outliers are
not.

Size

The Overview Pyramid provides a metrics
overview.

18

Communication

The Overview Pyramid provides a metrics
overview.

19

CALLS = Number of call sites
FANOUT = Sum of all FANOUTS
Coupling Intensity

Inheritance

The Overview Pyramid provides a metrics
overview.

20

ANDC = Average Number of Derived Classes
AHH = Average Hierarchy Height

The Overview Pyramid provides a metrics
overview.

21

The Overview Pyramid provides a metrics
overview.

22

close to high close to average close to low

Outlier
Detection

How to obtain the thresholds?

23

Statistical static analysis of reference systems
Context is important (e.g. programming language)

Lanza and Marinescu advise that you study many software
systems and extract statistical rules. The book extracts statistics
based on 45 Java systems.
Outliers may be signs of poor quality …

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose

24

Design Problems and Principles

25

Design principles come in prose - how to measure them?
Rarely a single metric is sufficient >>> Detection Strategies

Design Heuristics
Encapsulation
Minimize Coupling
Class Coherence
Inheritance Depth
...

Bad Smells
Comments
Switch Statement
Shotgun Surgery
...

Detection Strategies...

26

> ... are metric based
queries for detecting
design problems

> (Lanza & Marinescu 2002)

God Classes ...

28

... tend to centralize the intelligence of the system, to
do everything, and to use data from small data-classes

God Classes ...

29

Foreign data usage (ATFD)

Complexity (WMC)

Lack of cohesion (TCC)

... tend to centralize the intelligence of the system, to
do everything, and to use data from small data-classes

God Classes

30

Quantifiers
FEW
MANY
TOP
HIGH
ONE THIRD ...

Data Classes are dumb data holders

31

Data Classes are dumb data holders

32

NOPA = #Public Attributes,
NOAM = #Accessor Methods

Roadmap

> Software Metrics
—Size / Complexity Metrics
—Quality Metrics

> Metric-based Problem Detection
—Detecting Outliers
—Encoding Design Problems

> Moose (separate presentation)

33

What you should know!

> What is a metric?
> Why goals are important for choosing metrics?
> Why is the context of the metrics important?
> What is the difference between coupling and

cohesion?
> What metrics are present on the overview pyramid?
> What do detection strategies detect?
> Why reading code is bad?
> How does Moose solve the data analysis problems?

34

Can you answer these questions?

> What metrics are important for measuring some of
your projects (bachelor’s thesis project, etc…)?

> What are acceptable ranges of CYCLO for different
languages?

> Why is it hard to calculate CYCLO for Smalltalk
methods?

> What insights can a class blueprint provide besides
ATFD?

> What are the strategies of solving code smells
detected by detection strategies?

35

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

