Fuzz Testing (Fuzzing)

Mohammadreza Hazhirpasand

Software Composition Group

What | want to share

e Software testing ———— How it can help
The drawbacks

° Fuzzing — History of fuzzing
Fuzzing in software development
Basics of fuzzing
Demo: Radamsa — Blab — Spike - Burb suite - zzuf
AFL + demo
Symbolic execution and SMT solvers
Concolic execution
Hybrid fuzzing

° Wrap up — Fuzzing resources

Software testing

* Why?
e Suppose the following Python program:

import math

The Newton—Raphson method
(x):
approx = None
guess = X / 2
while approx != guess:

print ("Approx" + str(approx))

’ approx = guess
Python’s math module guess = (approx + x / approx) / 2
return approx

print my_sqrt(454.0)
print math.sqrt(454.0)

Software testing

Testing is incomplete because:

1.

2.

A finite set of inputs can be checked

The correctness of a result is commonly important

Test results are used to make business decisions for release dates
We cannot be certain that all features of a method are tested
When Inputs become complex, it becomes harder to test
Time-consuming

Adversarial mindset is needed to extensively test the target

The history of fuzzing

* In 1988
* Prof. Barton Miller, University of Wisconsin

* The lightning-induced noise on his network connection caused

common UNIX commands to crash

* A class project with the term “fuzzing”

Fuzzing is a way of discovering bugs in software by providing
randomized/pattern-based inputs to programs to find test cases that
cause a crash.

¥ research.checkpoint.com/2020/instagram_rce-code-execution-vulnerability-in-instagram-app-for-android-and-ios/ w

.~ #nstaHack .

#Instagram_RCE: Code Execution Vulnerability in Instagram App for
Android and i0S

September 24, 2020

Goal of fuzzing

* To ensure certain bad things never occur (crashes, thrown exceptions)
* Such bad things can lay the cornerstone for security vulnerabilities
* However, sometimes such issues are the security vulnerabilities

* To complement functional testing

When to conduct fuzz testing?

https://www.microsoft.com/en-us/securityengineering/sdl

Training Design Implementation Verification

« Core training = Define quality = Attack surface = Specify tools » Dynamic¢/Fuzz = Response plan

gates/bug bar analysis = Enforce banned testing = Final security
= Analyze security = Threat Modeling functions = Verify threat review

and privacy risk « Static analysis models/attack - Release archive
surface

https://www.microsoft.com/en-us/securityengineering/sdl

Fuzzers are either...

* File-based: mutate or generate inputs and see what happens

* Network-based: act as a man-in-the-middle and mutate inputs
exchanged between parties

Smart or dumb?

* A fuzzer that generates completely random input is known as a
“dumb” fuzzer

* A fuzzer with knowledge of the input format is known as a “smart”
fuzzer

10

Kinds of fuzzing

* Black box —— The tool knows nothing about the target and its input
Easy to use
Explore only shallow states

 White box —> Generates new inputs by program analysis and constraint solving
Easy to use (relatively)
Computationally expensive

° Gr‘ey box —> Generates new inputs by some knowledge of the program
Easy to use (relatively)
Computationally expensive

Fuzzing inputs can be ...

* Mutation ——— Avalid input is mutated randomly to produce malformed input
Dumb fuzzing / Smart fuzzing

* Replay ——— Replaying the captured messages

* Generation . Generate input from scratch - grammar
Only mutates randomly a chunk of an input

e Evolutiona ry __ . Usefeedback from each test case to learn the format of the input
Code coverage

Terminology: code coverage

* In program analysis, code coverage is a standard metric that describes

how much of the code is exercised

* However, higher code coverage does not imply more bugs ®, but it

certainly increases the likelihood of finding one ©

* In scientific papers, researchers attempt to prove the efficiency of

their proposed fuzzer by either code coverage or bug coverage

Vulnerable friends!

* Protocol ——— TCP, DNS, FTP, ...
* File format ——— MP3, JPEG, PNG, ...
* User input —— Names, addresses, file names,

* Programming lang... — . j.uascript, PHP

A fuzzer’s skeleton

Completely blank or long strings, null character, max and
min values for integers

* Test case generation

e Reproducibility .

Record test cases and associated information

e Crash detections —— Attach a debugger, process disappears, timeouts

Fuzzing in conferences

mS&P ®mNDSS = CCS = USENIX

2015 2016 2017 2018 2019 2020

1

of papers in fuzzing

Fuzzing in competition

* CGC — Cyber Grand Challenge — created by DARPA

17

Give some examples please! ©

Radamsa

« Radamsa is a mutation-based, black box fuzzer

* Radamsa performs dumb mutation on inputs

Blab

* Blab generates inputs according to a grammar

 The grammar can be specified as regexps or CFGs

zzuf

e Zzuf is a simple, lightweight, and deterministic tool
* Bug reproducibility is easy

* It intercepts file operations and modifies random bits in the program'’s
input

SPIKE

e SPIKE is a fuzzer creation kit

* SPIKE provides an C language API for fuzzing network protocols

Burp intruder

e Burp orchestrates hand-crafted attacks against web applications

* Users can benefit from other features of burp suites, e.g., proxy, spider

§2 BURPSUITE

AFL — American Fuzzy Lop

american fuzzy lop 0.47b (readpng)

process timing
0 days, O hrs, 4 min, 43
0 days, 0 hrs, 0 min, 26
none seen yet
0 days, 0 hrs, 1 min, 51
cycle progress map
38 (19.49%)
0 (0.00%)

overall results
sec
sec 195
0
sec 1
coverage
1217 (7.43%)
2.55 bits/tuple

stage progress findings in depth

interest 32/8
0/9990 (0.00%)
654k
2306/sec

fuzzing strategy yields
88/14.4k, 6/14.4k, 6/14 .4k
0/1804, 0/1786, 1/1750
31/126k, 3/45.6k, 1/17.8k
1/15.8k, 4/65.8k, 6/78.2k
34/254k, 0/0
2876 B/931 (61.45% gain)

128 (65.64%)
85 (43.59%)
0 (0 unique)
1 (1 unique)
path geometry
3

178
114

AFL — American Fuzzy Lop

Michal Zalewski, 2013

 First practical high performance guided fuzzer

* Compile-time instrumentation and genetic algorithms

* A tuple of <ID of current code location, ID last code location>

 Many bugs!

AFL — American Fuzzy Lop

More than 20 forks of AFL:
AFL++

WinAFL

AFLsmart

AFLGo

FairFuzz

AFLnet

S S o R A

https://github.com/Microsvuln/Awesome-AFL

26

https://github.com/Microsvuln/Awesome-AFL

AFL — American Fuzzy Lop

DEMO

There is always a problem...

* The indomitable spirit of mutation-based fuzzers is questionable as ...

How can mutation-based fuzzers solve such constraints? @

int (uint64_t magic) {
if ((magic ~ 0x9cfbd6lbad9abad9) + (magic * 0xa68977238907efle)) == 939)
{

return 1;

}

return 0;

}

28

Symbolic execution: history

* In 1976, Symbolic execution and program testing
* As a means of program verification to prove the program’s correctness
* From the formal verification to vulnerability analysis of the program

e 2005-present: practical symbolic execution (using SMT solvers)

Terminology: SMT solvers

 SMT or Satisfiability Modulo Theories

e An SMT formula is a Boolean combination of formulas over first-order

theories

* Example of SMT theories include arrays, integer and real arithmetic,

strings, ...

e Qutcome

SAT(+ model) = if F is satisfiable
unsat - if F is unsatisfiable

Terminology: SMT solvers

* 73 is a high-performance theorem prover, developed at Microsoft Research

https://github.com/Z3Prover/z3

from z3 import * '()
circle , square , triangle = Ints('Enter three inputs')

s = Solver() ‘ D _
s.add(circle+circle==10) ‘ X + D‘ 'Z

s.add(circlexsquare+square==12)

s.add(circlexsquare —-trianglexcircle==circle) | -
print s.check()
print s.model()

=> sat
=> [triangle = 1, square = 2, circle = 5] 31

https://github.com/Z3Prover/z3

Symbolic Execution engines

* KLEE: a dynamic symbolic execution engine built on top of

the LLVM compiler — osbi 2008
* SAGE: Scalable, Automated, Guided Execution — NDss 2008

* More: jCUTE (Java), Kleenet (sensor networks), Angr, S2E, many others...

Symbolic Execution - example

* Traditional fuzzers fail to exercise all possible behaviors
* Execute the program with symbolic valued

* Generate new inputs at each branch to cover all parts of code

Void func(int x, int y){
intz=2*y; func(x =a,y=Db)
if(z == x){ Path constraint 2=2b
if (x>y+10)
ERROR
}
}
int main(){ X=a=-0 && &&
int X = sym_input(); y=b=1 a<=b+10 a>b+10
inty = sym_input();
func(x, y);
return O; Generated ERROR
} Test inputs x=a= 2 x=a =_3°
for this path y=b=1 y=b=15

Symbolic Execution - limitations

* Path explosion: symbolically executing all feasible program paths does

not scale to large programs
* Loops and recursions: infinite execution tree

* SMT solver limitations: dealing with complex path constraints

34

Concolic Execution Engines —

* Concolic = Concrete + Symbolic (dynamic symbolic execution)

* A Program is executed with concrete (random inputs) and symbolic inputs

Void func(int x, int y){ Random seedx =2,y =1

intz=2*y: func(x=a,y=b)

if(z == x){ Path constraint 7=%b

if (x>y+10)
ERROR
2b'!=a

}
}
int mainQ{ b == 2 &&

int x = input(); 2> b+ 10

inty = input();

func(x, y);

return 0; ERROR
} x=a=30

y=b =15 .

Concolic Execution engines

 QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing - USENIX
2018

* Symbolic execution with SymCC: Don't interpret, compile! - usenix 2020

* Intriguer: Field-Level Constraint Solving for Hybrid Fuzzing - ccs 2019

* Eclipser : Grey-box Concolic Testing on Binary Code - ICSE 2019

* Driller: Augmenting Fuzzing Through Selective Symbolic Execution- NDss 2016

e SAVIOR: Towards Bug-Driven Hybrid Testing - s&p 2019

Traditional fuzzing vs. symbolic execution

* The drawback of symbolic execution is its impracticality for real-world cases

* Traditional fuzzing is way faster and explores deeper parts of the code

* However, traditional fuzzing has limited code coverage in breadth

ﬁ

—

o*odgz@ i 5@

mbolic Executio

Hybrid fuzz testing

* To combine the two aforementioned approaches to achieve better results
* Hybrid fuzz testing is commonly composed of

basic block profiling + symbolic execution + input generation + guided random fuzzing

\ A \

Code coverage To increase breadth of covered code Generate random inputs Monitor program’s state

Fuzzing resources

* The Fuzzing Book -- https://www.fuzzingbook.org

* Fuzzing: Brute Force Vulnerability Discovery
* Fuzzing for Software Security Testing and Quality Assurance

* https://github.com/Microsvuln/Awesome-AFL

39

https://www.fuzzingbook.org/
https://github.com/Microsvuln/Awesome-AFL

Now you should know

* What is fuzzing and why?

 What is code coverage?

 What is a (black box) || (white box) | | (grey box) fuzzer?
* What is hybrid fuzzing?

* How can symbolic execution help fuzzers?

