
Fuzz Testing (Fuzzing)
Mohammadreza Hazhirpasand

Software Composition Group

1

What I want to share

• Software testing

• Fuzzing

• Wrap up

How it can help
The drawbacks

History of fuzzing
Fuzzing in software development
Basics of fuzzing
Demo: Radamsa – Blab – Spike - Burb suite - zzuf
AFL + demo
Symbolic execution and SMT solvers
Concolic execution
Hybrid fuzzing

Fuzzing resources

2

Software testing

• Why?
• Suppose the following Python program:

The Newton–Raphson method

Python’s math module

3

Software testing

Testing is incomplete because:

1. A finite set of inputs can be checked

2. The correctness of a result is commonly important

3. Test results are used to make business decisions for release dates

4. We cannot be certain that all features of a method are tested

5. When Inputs become complex, it becomes harder to test

6. Time-consuming

7. Adversarial mindset is needed to extensively test the target 4

The history of fuzzing

• In 1988

• Prof. Barton Miller, University of Wisconsin

• The lightning-induced noise on his network connection caused

common UNIX commands to crash

• A class project with the term “fuzzing”

5

Fuzzing is a way of discovering bugs in software by providing
randomized/pattern-based inputs to programs to find test cases that

cause a crash.

6

Goal of fuzzing

• To ensure certain bad things never occur (crashes, thrown exceptions)

• Such bad things can lay the cornerstone for security vulnerabilities

• However, sometimes such issues are the security vulnerabilities

• To complement functional testing

7

When to conduct fuzz testing?

https://www.microsoft.com/en-us/securityengineering/sdl

8

https://www.microsoft.com/en-us/securityengineering/sdl

Fuzzers are either…

• File-based: mutate or generate inputs and see what happens

• Network-based: act as a man-in-the-middle and mutate inputs
exchanged between parties

9

Smart or dumb?

• A fuzzer that generates completely random input is known as a
“dumb” fuzzer

• A fuzzer with knowledge of the input format is known as a “smart”
fuzzer

10

Kinds of fuzzing

• Black box

• White box

• Grey box

The tool knows nothing about the target and its input
Easy to use
Explore only shallow states

Generates new inputs by program analysis and constraint solving
Easy to use (relatively)
Computationally expensive

11

Generates new inputs by some knowledge of the program
Easy to use (relatively)
Computationally expensive

Fuzzing inputs can be …

• Mutation

• Replay

• Generation

• Evolutionary

A valid input is mutated randomly to produce malformed input
Dumb fuzzing / Smart fuzzing

Replaying the captured messages

Generate input from scratch - grammar
Only mutates randomly a chunk of an input

Use feedback from each test case to learn the format of the input
Code coverage

12

Terminology: code coverage

• In program analysis, code coverage is a standard metric that describes

how much of the code is exercised

• However, higher code coverage does not imply more bugs L, but it

certainly increases the likelihood of finding one J

• In scientific papers, researchers attempt to prove the efficiency of

their proposed fuzzer by either code coverage or bug coverage

13

Vulnerable friends!

• Protocol

• File format

• User input

• Programming lang...

TCP, DNS, FTP, …

MP3, JPEG, PNG, …

Names, addresses, file names,

JavaScript, PHP

14

A fuzzer’s skeleton

• Test case generation

• Reproducibility

• Crash detections

Completely blank or long strings, null character, max and
min values for integers

Record test cases and associated information

Attach a debugger, process disappears, timeouts

15

Fuzzing in conferences

16

Fuzzing in competition

• CGC – Cyber Grand Challenge – created by DARPA

17

Give some examples please! J

18

Radamsa

• Radamsa is a mutation-based, black box fuzzer

• Radamsa performs dumb mutation on inputs

19

Blab

• Blab generates inputs according to a grammar

• The grammar can be specified as regexps or CFGs

20

zzuf

• Zzuf is a simple, lightweight, and deterministic tool

• Bug reproducibility is easy

• It intercepts file operations and modifies random bits in the program's
input

21

SPIKE

• SPIKE is a fuzzer creation kit

• SPIKE provides an C language API for fuzzing network protocols

22

Burp intruder

• Burp orchestrates hand-crafted attacks against web applications

• Users can benefit from other features of burp suites, e.g., proxy, spider

23

AFL – American Fuzzy Lop

24

AFL – American Fuzzy Lop

• Michal Zalewski, 2013

• First practical high performance guided fuzzer

• Compile-time instrumentation and genetic algorithms

• A tuple of <ID of current code location, ID last code location>

• Many bugs!

25

AFL – American Fuzzy Lop

More than 20 forks of AFL:

1. AFL++

2. WinAFL

3. AFLsmart

4. AFLGo

5. FairFuzz

6. AFLnet

7. … https://github.com/Microsvuln/Awesome-AFL
26

https://github.com/Microsvuln/Awesome-AFL

AFL – American Fuzzy Lop

DEMO

27

There is always a problem…

• The indomitable spirit of mutation-based fuzzers is questionable as …

How can mutation-based fuzzers solve such constraints? L

28

Symbolic execution: history

• In 1976, Symbolic execution and program testing

• As a means of program verification to prove the program’s correctness

• From the formal verification to vulnerability analysis of the program

• 2005-present: practical symbolic execution (using SMT solvers)

29

Terminology: SMT solvers

• SMT or Satisfiability Modulo Theories

• An SMT formula is a Boolean combination of formulas over first-order

theories

• Example of SMT theories include arrays, integer and real arithmetic,

strings, ...

• Outcome SAT(+ model) à if F is satisfiable
unsat à if F is unsatisfiable

30

Terminology: SMT solvers

• Z3 is a high-performance theorem prover, developed at Microsoft Research

https://github.com/Z3Prover/z3

31

https://github.com/Z3Prover/z3

Symbolic Execution engines

• KLEE: a dynamic symbolic execution engine built on top of

the LLVM compiler – OSDI 2008

• SAGE: Scalable, Automated, Guided Execution – NDSS 2008

• More: jCUTE (Java), Kleenet (sensor networks), Angr, S2E, many others…

32

Symbolic Execution - example

• Traditional fuzzers fail to exercise all possible behaviors
• Execute the program with symbolic valued
• Generate new inputs at each branch to cover all parts of code

33

Symbolic Execution - limitations

• Path explosion: symbolically executing all feasible program paths does

not scale to large programs

• Loops and recursions: infinite execution tree

• SMT solver limitations: dealing with complex path constraints

34

Concolic Execution Engines – Symbolic execution

• Concolic = Concrete + Symbolic (dynamic symbolic execution)

• A Program is executed with concrete (random inputs) and symbolic inputs

35

Concolic Execution engines

• QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing - USENIX
2018

• Symbolic execution with SymCC: Don't interpret, compile! - USENIX 2020

• Intriguer: Field-Level Constraint Solving for Hybrid Fuzzing - CCS 2019

• Eclipser : Grey-box Concolic Testing on Binary Code - ICSE 2019

• Driller: Augmenting Fuzzing Through Selective Symbolic Execution- NDSS 2016

• SAVIOR: Towards Bug-Driven Hybrid Testing - S&P 2019

36

Traditional fuzzing vs. symbolic execution

• The drawback of symbolic execution is its impracticality for real-world cases

• Traditional fuzzing is way faster and explores deeper parts of the code

• However, traditional fuzzing has limited code coverage in breadth

37

Hybrid fuzz testing

• To combine the two aforementioned approaches to achieve better results

• Hybrid fuzz testing is commonly composed of

basic block profiling + symbolic execution + input generation + guided random fuzzing

38

Code coverage To increase breadth of covered code Generate random inputs Monitor program’s state

Fuzzing resources

• The Fuzzing Book -- https://www.fuzzingbook.org

• Fuzzing: Brute Force Vulnerability Discovery

• Fuzzing for Software Security Testing and Quality Assurance

• https://github.com/Microsvuln/Awesome-AFL

39

https://www.fuzzingbook.org/
https://github.com/Microsvuln/Awesome-AFL

Now you should know

• What is fuzzing and why?

• What is code coverage?

• What is a (black box) || (white box) || (grey box) fuzzer?

• What is hybrid fuzzing?

• How can symbolic execution help fuzzers?

40

