
Linear Data Structures

Lecturer: Nataliia Stulova
Teaching assistant: Mohammadreza Hazirprasand

OF THE UNIVERSITIES OF
BERN, NEUCHÂTEL AND

FRIBOURG

Software Skills Lab

Linear data
structures

2

Arrays
Lists
Stacks
Queues

● They are abstractions of all
kinds of rows, sequences, and
series from the real world...

● … so their elements are
arranged sequentially or
linearly and linked one after
another in a specified order

Arrays

3

Array data structure

● a native data structure to store a fixed number of elements of the same type

● elements are accessed by their relative position (random access) - each element is independent of

others

h e l l o
0 1 2 3 4

array element

element index

4

N-elements array indices range
from 0 to N-1

Java arrays

MyType myArray[] = new MyType[size];

MyType myArray[];
myArray = new MyType[size];

On creation arrays of primitive types are filled with

default values:

boolean status[];
status = new boolean[2];

status[0] = true;

array
name

elements type

array
size

false
0 1

false

true
0 1

false

5

Creating Java arrays

Arrays of primitive types

int nums[] = new int[2];

nums[0] = 23;
nums[1] = 9;

int nums[] = {23, 9};

Arrays of objects

Car parking[] = new Car[20];

parking[0] = new Car();
parking[0].setSpeed(0);

Car truck = new Car();
truck.fuel = 20;
parking[1] = truck;

6

Multi-dimensional arrays

int matrix[][] = new int[2][3];

matrix[0][0] = 4;
matrix[1][2] = 3;

7

Multidimensional arrays are arrays of arrays with each
element of the array holding the reference of other
array

MyType matrix[]..[] = new MyType[s1]..[sN];

Examples: spreadsheets, games (like sudoku),
timetables, images

number of
dimensions

each dimension
size

rows columns

0 0 0

0 0

0

01

0 1 2

0 4 0

0 0

0

31

0 1 2

java.util.Arrays

Reference Javadoc: Arrays (Java SE 11 & JDK 11)

This class contains various methods for manipulating arrays (such as sorting and searching):

● fill()
● sort() (last lecture)

● binarySearch() (last lecture)

● copyOf()
● equals()
● ...

8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html

Lists

9

Linked list data structure

● a data structure to store a non-fixed number of elements of the same type

● elements are accessed in their order (sequential access) - each element needs to be connected to

the previous

list element

element link

10

h e l l o

Linked list in Java from scratch

list head

11

h e l l o

implementing a linked list data structure from

scratch in Java can involve Nested Classes - a a

way of logically grouping classes that are only

used in one place

public class LinkedList<T> {

 //Node inner class
 public class Node {
 public T data; //Data to store
 public Node nextNode; //Link to next node
 }

 //head node
 public Node headNode;

 ...

}

list tail

nu
ll

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Java lists: Classes VS Interfaces
● List<E> is an Interface - a blueprint of a class, does

not hold any implementation details

● LinkedList<E> is a Class - a blueprint of an object,

has attributes and methods, does not hold any values

● myList is an Object - an instance of the

LinkedList<E> class, holds concrete values in its

attributes

12

interface List<E> {
 add(...);
 remove(...);
 ...
}

class LinkedList<E> {
 attributes, if any

 add(...) {...}
 remove(...) {...}
 ...
}

List<String> myList = new LinkedList<String>();
myList.add(“Potatoes”);

Accessing list elements

Loops

for (int i = 0; i < groceries.size(); i++) {
 System.out.println(groceries.get(i));
 }

for (String product : groceries) {
 System.out.println(product);
 }

Iterators

An interface to go through elements in a collection data structure:
○ hasNext() method checks if there are any elements

remaining in the list
○ next() method returns the next element in the iteration

Iterator<String> groceriesIterator = groceries.iterator();

while(groceriesIterator.hasNext()) {
 System.out.println(groceriesIterator.next());
}

13

List<String> groceries = Arrays.asList("Potatoes", "Ketchup", "Eggs");

new

java.util.List
A library interface that provides various useful

operations on lists:

● get()
● add(), addAll()
● remove()
● contains(), containsAll()
● clone()
● equals()
● ...

14

Some classes implementing the List interface:

LinkedList (Java SE 11 & JDK 11)

ArrayList (Java SE 11 & JDK 11)

Vector (Java SE 11 & JDK 11)

Differences:memory management, element access

(some allow random access), allowing or not null

elements,...

Reference Javadoc: List (Java SE 11 & JDK 11)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Vector.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html

Stacks

15

Stack data structure

● a data structure to store a non-fixed number of elements of the same type

● elements are stored sequentially, but accessed by the Last In First Out (LIFO) principle, one at a

time, at the top of the stack

16

h
e
l
l
o

stack element added last

top of the stack

bottom of the stack

Stack operations

Basic:

● push: add an element to the top of the stack

● pop: remove an element from the top of the stack and

return it

Extra:

- top/peek: get the value of the top element of the stack

without removing the element

- checks for emptiness and fullness

17

Stack implementation and use

Implementations

● array-based, esp. with fixed capacity

● as a resizable array (e.g., using a Vector)

● linked list-based

18

Some examples of use

● an “undo” mechanism in text editors

● forward and backward navigation in web

browsers

● expression parsing and evaluation (e.g.,)

● memory management (part II of this course)

java.util.Stack<E>

Reference Javadoc: Stack (Java SE 11 & JDK 11)

The Stack class represents a last-in-first-out (LIFO) stack of objects.

● empty()
● peek()
● pop()
● push(E item)
● search(Object obj)

19

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Stack.html

Queues

20

Queue data structure

● a data structure to store a non-fixed number of elements of the same type

● elements are stored sequentially, but accessed by the First In First Out (FIFO) principle, one at a

time, at the top of the stack

21

h
e
l
l
o

queue element added first

front of the queue

back of the queue

queue element added last

Queue operations

Basic:
● enqueue: add an element to the back of the

queue
● dequeue: remove an element from the front of

the queue and return it
Extra:

- front: get the value of the first element of the
queue without removing the element

- checks for emptiness and fullness

22

Queue implementation and use
Implementations

● array-based, esp. with fixed capacity

● linked list-based

23

Some examples of use

● handling of high-priority processes in an

operating system is handled using queues

● ordering requests to a printer to print

pages, the requests are handled by using a

queue

● messages on social media, they are sent to a

queue on the server

java.util.Queue<E>

Reference Javadoc: Queue (Java SE 11 & JDK 11)

A library interface that provides various queue operations:

24

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html

What you should remember

Use arrays when:

● you know the number of elements…

● … or the number of elements will increase

rarely

● you need fast access to individual elements

Use lists when:

● you do not know the number of elements

● you do not need fast access to individual

elements

25

Summary and practice

26

Exercise 1: Arrays

Matrix multiplication

● write a class representing a 2D matrix

● attributes:
○ int matrix[][]

● methods:
○ Matrix(int rows, int cols) - constructor
○ Matrix add(Matrix other) - addition
○ Matrix product(Matrix other) - multiplication

I/O

-

Tests (JUnit, class MatrixTest)

● dimensions mismatch

● 3 correct cases: 1-column matrix,

1-row matrix, a 2x3 matrix

27

NEW this keyword: clarify the context

result[i][j] = this.matrix[i][j] + other.matrix[i][j]

https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations

new

https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations

Exercise 2: Lists

Computing various average values

● write a class Averages to compute various means:

arithmetic, geometric, and harmonic
https://en.wikipedia.org/wiki/Average

● methods:
○ static Double arithMean(ArrayList<E> nums)
○ static Double geomMean(ArrayList<E> nums)
○ static Double harmMean(ArrayList<E> nums)

I/O

● Read a sequence of numbers from
System.in

● Print average values to System.out

Tests

● one test for each method

28

NEW static keyword: helper methods (and no objects!)
Double arMean = Averages.artihMean(ArrayList<E> nums)

NEW boxed types: Integer, Float, Double….

new

new

https://en.wikipedia.org/wiki/Average

