
(Data Structure) Algorithms

Lecturer: Nataliia Stulova
Teaching assistant: Mohammadreza Hazirprasand

OF THE UNIVERSITIES OF
BERN, NEUCHÂTEL AND

FRIBOURG

Software Skills Lab

From the data structure point of
view

2

Categories

From the data structure point of view, following are some important categories of algorithms:

● Search − search an item in a data structure.

● Sort − sort items in a certain order.

● Insert − insert item in a data structure.

● Update − update an existing item in a data structure.

● Delete − delete an existing item from a data structure.

Next slides cover some common approaches to designing algorithms

3

More general approach to
algorithms

4

Recursion

5

“to understand recursion you need
to understand recursion”

In mathematics: an abstraction being defined

through itself.

In computer science:

● a data structure defined so (list, tree,...)

● an algorithm solving a problem where

the solution depends on solutions to

smaller instances of the same problem

(think of methods that call themselves)

Recursion

6

“to understand recursion you need
to understand recursion”

Structure:

● base case (minimal solution)

● recursive case (growing the solution)

Example: factorial computation

4! = 4*3*2*1 = 24
5! = 5*4*3*2*1 = 5*4!

int factorial(int n){
 if (n == 0) return 1;
 else return(n * factorial(n-1));
}

Divide and Conquer

7

Divide and conquer approach works for

solving problems which:

● have optimal substructure property

● can be solved by combining optimal

solutions to non-overlapping

sub-problems

Optimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Divide and Conquer

8

Example: binary search for an element with

a value N in a sorted array

● divide: split array in the middle

● if middle < N, repeat for left split

● else repeat for right splitOptimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Divide and Conquer

9

Example: mergesort:

● divide the unsorted list into n sublists,

each containing one element

● repeatedly merge sublists to produce

new sorted sublist

Optimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Greedy algorithms

10

Greedy algorithms work for solving

problems which:

● have optimal substructure property

● have Greedy Choice Property: global

optimum can be reached by selecting

the local optimums.

Optimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Greedy algorithms

11

Example where greedy choice
property does not hold: finding a
path with maximal weight in a
binary tree

Optimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Problem where both greedy
choice and optimal substructure
property hold: determine
minimum number of coins to
give while making change

Dynamic Programming

12

Optimal Substructure Property: A

problem follows optimal substructure

property if the optimal solution for the

problem can be formed on the basis of

the optimal solution to its subproblems

Divide and conquer approach works for

solving problems which:

● have optimal substructure property

● can be solved by combining optimal

solutions to overlapping sub-problems

Contrast with divide-and-conquer:

sub-problems are overlapping, so parts of

solution already computed can be reused

finding a path with maximal
weight in a binary tree can be
done with DP by memorizing
path weights

Practice

13

Exercise 1

14

recursion

● read an integer number N from input

● print all even numbers from 2 to N without using a

loop

I/O

- Stream IO to read the input

- Output: Stream IO to print

Tests

- for algorithm correctness

14

Exercise 2

15

divide and conquer: binary search

● read an array of integer numbers from a text file

● sort it

● ask user several times to guess if a certain number

is in the array

● if the user guesses correctly, return the position of

the number, using binary search

● if the user guesses wrong, return -1

I/O

- Input: File IO for reading data

- Output: Stream IO to print

Tests

- for algorithm correctness

15

Exercise 3

16

greedy algorithms

● read two same-size arrays of integers

● write a function to get the minimal sum of their

dot product

E.g., if a = {1,3,7}, b = {4,0,5}, then

min_product = 5*1 + 4*3 + 0*7 = 17

think of coin changing problem :-)

I/O

- Stream IO to read the input

- Output: Stream IO to print

Tests

- for algorithm correctness

16

