
Towards Actionable Visualisation
in Software Development

Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz
Software Composition Group, University of Bern

Bern, Switzerland
{merino, ghafari, oscar}@inf.unibe.ch

Abstract—Although abundant studies have shown how visual-
isation can help software developers to perform their daily tasks,
visualisation is still not a common practice since developers
have little support for adopting a proper visualisation for their
needs.

In this paper we review the 346 papers published in SOFT-
VIS/VISSOFT venues and identify 65 design study papers that
describe how visualisation is used to alleviate various difficulties
in software development. We classify these studies into several
problem domains that we collected from the research on soft-
ware development community, and highlight the characteristics
of each study. On the one hand, we support software developers
to put visualisation in action by mapping existing techniques
to particular needs in various problem domains. On the other
hand, we help researchers in the field by exposing domains with
little visualisation support. We found a disconnect between the
problem domains on which visualisation have focused and the
domains that get the most attention from practitioners.

I. INTRODUCTION

Software visualisation provides enormous advantages for
development; to name a few, it supports project managers
in communicating insights to their teams [1], it guides
testers when exploring code for anomalies [2], it helps
analysts to make sense of multivariate data [3], and it aids
new developers in open software communities [4]. However,
visualisation is not yet commonly used by developers. More
than a decade ago researchers wondered why is software
visualization not widely used? [5]. They realised one of the
reasons is that efforts in software visualisation are out of
touch with the needs of developers [6]. Several attempts
have tried to fill in the gap and encourage developers to
adopt visualisation. For instance, Maletic et al. [7] proposed
a taxonomy of software visualisation to support various
tasks during software development; Schots et al. [8] ex-
tended this taxonomy by adding the resource requirements
of visualisations, and providing evidence of their utility;
Storey et al. [9] proposed a framework to assess visualisation
tools; Kienle et al. [10] performed a literature survey to
identify quality attributes and functional requirements for
software visualisation tools; Padda et al. [11] proposed some
visualisation patterns to guide users in understanding the
capabilities of a given visualisation technique; and Sensalire
et al. [12] classified the features that users require in soft-
ware visualisation tools. However, the lack of organisation
among visualisation approaches is still an important barrier
to finding and using them in practice [8]. In fact, developers

are still unaware of existing visualisation techniques to
adopt for their particular needs. A few studies have tried to
address this issue by investigating to which software engi-
neering tasks particular visualisation techniques have been
applied [13]–[15]. Nevertheless, we believe these studies are
still coarse-grained to match a suitable visualisation to their
concrete needs.

When developers perform a particular programming task
they ask some questions such as “what code is related to a
change?” or “where is this method called?”. Several studies
have investigated such questions and classified them into
groups [16]–[18]. Indeed, such questions reflect developer
needs, and we believe mapping them to existing types of
visualisation can help developers to adopt visualisation in
their daily work. Our twofold goal is 1) to help practitioners
to find suitable visualisation for their specific needs, and
2) to assist researchers in the field to identify problem
domains with little visualisation support. Accordingly, we
focus on the following research questions:

RQ1. What are the characteristics of visualisation tech-
niques that support developers needs?

RQ2. How well are various problem domains supported by
visualisation?

We reviewed relevant literature in the software visualisation
field and found that one third of the studies combined
various visualisation techniques, but most of them be-
long to one of the following two types: 1) techniques
that use geometric transformations to explore structure
and distribution, and 2) pixel-oriented techniques that are
suitable for displaying large amounts of data. We found
extensive visualisation support for needs in the domains
of history, dependency, and performance, whereas there is
little support for needs in rationale, refactoring, and policies
domains.

The remainder of the paper is structured as follows:
Section II describes the methodology that we followed to
collect relevant literature and select design studies proposed
in the software visualisation field; Section III presents our
results by classifying them based on their task, need, au-
dience, data source, representation, tool, and medium [7];
Section IV discusses our research questions and threats
to validity of our findings, and Section V concludes and
presents future work.



II. METHODOLOGY

We applied the Systematic Literature Review (SLR) ap-
proach, a rigorous and auditable research methodology for
Evidence-Based Software Engineering (EBSE). The method
offers a means for evaluating and interpreting relevant
research to a topic of interest. We followed Keele’s com-
prehensive guidelines [19], which make it less likely that
the results of the literature survey will be biased.

A. Data sources and search strategy

We sought papers that are relevant to the aim of this
study, i.e., to propose a visualisation technique which
demonstrated to be useful to solve a specific problem in
software development. Although such papers are expected
to be found across multiple software engineering venues,
we decided to collect them from the complete set of papers
published by SOFTVIS [20] and VISSOFT [21] We opted for
these two venues because we believe their fourteen editions
and hundreds of papers dedicated specially to software
visualisation offer a sound body of literature reflected in
the good classification that they obtain in the CORE rank-
ing [22] (that considers citation rates, paper submission
and acceptance rates among other indicators). Figure 1
summarises the number of papers collected as well as those
included in this study.

Figure 1. Collection of 346 papers published in SOFTVIS/VISSOFT venues.

B. Included and excluded studies

We searched for problem-driven studies in which we
could identify the role of the user, specific development
needs, a proposed visualisation technique, and an evaluation
demonstrating utility. We excluded short papers of one or
two pages (like posters, keynotes and challenges) which
due to limited space are unlikely to contain enough detail.
We also excluded short papers for which a longer version
exists. Of the 273 remaining papers we selected design
study papers that describe how a visualisation is suitable for

tackling a particular problem in software development. We
included such papers in our study and excluded papers in
the other categories proposed by Munzner [23] (technique,
system, formalism, and model) because we considered
them unlikely to provide a visualisation to tackle a problem
in software development.

We classified the types of papers by first reading the
abstract, second the conclusion, and finally, in the cases
where we still were not sure of their main contribution,
reading the rest of the paper. Although some papers might
exhibit characteristics of more than one type, we classi-
fied them focusing on their primary contribution. Figure
2 shows the outcome of our classification. We identified
65 design study papers and included them in the study.
Although approximately two thirds of the papers came from
VISSOFT, selected papers that we classify as design studies
are balanced.

Figure 2. Classification of the 273 SOFTVIS/VISSOFT papers by type.

Figure 3 shows a stacked line-chart with the evolution
of the number of papers published in the venues by type.
Although all types show an upward trend, the most notable
cases are system, model and formalism types. Instead, de-
sign papers increased moderately. Traditionally, the number
of papers in SOFTVIS editions (2003-2010) was consistently
higher than in VISSOFT workshops (2002-2011). The trend
of the publications once they merged in the VISSOFT con-
ferences (2013-2015) seems more influenced by SOFTVIS.

Figure 4 shows a visualisation of the universe of 346
papers published in SOFTVIS/VISSOFT. In this visualisation,
rectangles represent papers, their height encodes the num-
ber of pages (a 5-page paper is depicted by a square), and
the colour is used to identify its venue (VISSOFT in blue,
and SOFTVIS in red). We used the intensity of the colour to
represent the publication year, thus the darker the colour
the newer the paper. Edges connect authors (grey circles)
to papers (rectangles). The 65 selected design study papers
are distinguished by a black border and a label on top. In
the visualisation the topology of the community is exposed.
A few large groups of collaboration, that agglomerate many
publications (for which we labelled a main contributor),



Figure 3. Evolution of SOFTVIS/VISSOFT papers by type. From the bottom
upwards: Design Study, Technique, Systems, Model, and Formalism.

contrast with the large number of groups that have few
of them. We identify two main groups: (1) a cohesive one
where we labelled the author “Telea, A.”, and (2) another
less cohesive but larger one, where we labelled the author
“Lanza, M.”. We also observe that red and blue papers
agglomerate in the upper and lower part of the visualisation
respectively. Although there is no data encoded in the
position of rectangles (they are distributed using a force-
directed layout), the visualisation facilitates the observation
that in small groups only one colour predominates, thus
their publications are not intermingled between SOFTVIS
and VISSOFT. Moreover, the selected papers are scattered
among groups of different size, venues and years of publi-
cation. An interactive version of this visualisation is avail-
able [24].

C. Data Extraction

Table I presents the attributes that we extracted from
each paper: 1) task; 2) need; 3) audience; 4) data source;
5) representation; 6) medium; and 7) tool.

Table I
DATA EXTRACTED FROM PAPERS.

Attribute Description
Task why the visualisation is needed (e.g., testing)
Need which questions motivated the visualisation
Audience who will use the visualisation (e.g., analyst)
Data source what source of data is visualised (e.g., source code)

Representation
what technique is used to represent
the data (e.g., pixel-oriented )

Medium where to render the visualisation (e.g., wall-disp.)
Tool which tool is used for evaluation (e.g., lviz)

We scanned the papers and identified recurrent sections
that are likely to contain the data we sought. In our
experience, attributes such as task, need, audience and data
source are frequently described in the evaluation section,

while the representation, medium and tool are typically
found in another section dedicated to describe the archi-
tectural decisions and implementation of the prototype.
Consequently, we extracted the task by identifying frequent
terms used to describe development concerns such as
programming, testing, debugging, maintenance, reverse-
engineering. For the need we looked for questions that are
used to specify what can be answered with the visualisation.
When there were no explicit questions, we extracted the
goal that motivated the need for a proposed visualisation.
The audience was detected by identifying roles that users
play in development such as programmer, engineer, tester.
We extracted the data source by identifying the origin of the
software artefacts that are visualised, such as source code
and running system. For the representation we reflected
on the description of visualisation techniques, analysed
figures and looked for their description. We extracted the
medium by recognising in the description the technology
required to display the visualisation such as wall display,
standard monitor. We also extracted attributes of tools from
the description of the artefact used in the evaluation such
as tool name, and availability. When we were not able
to identify an attribute, we searched for common terms
already found in other studies. When we still did not find
a description, we reported it as not identified.

III. RESULTS

In this section we describe various characteristics of the
65 papers listed in Table II. A complete set of extracted data
in our study is available online [24].

A. Task

Table III shows the classification of the papers based
on the type of tasks [7] they tackled. Figure 5 shows the
distribution of the types of tasks presented in each edition
of the venues. We sorted the venues chronologically starting
by SOFTVIS editions followed by VISSOFT ones. We think
it provides a better understanding of their various contri-
bution. We observe that even though we selected papers
from almost all editions of SOFTVIS and VISSOFT (we did
not find design study papers in VISSOFT’02), we included
only few papers from the first editions of VISSOFT. This
can be a consequence of the lower percentage of design
study papers in VISSOFT than in SOFTVIS (see Figure 1).
We also detected that papers tackling testing appear for
the first time only in the two last editions of SOFTVIS
and then reappear in VISSOFT’14. An explanation for this
can be that those contributors of SOFTVIS interested in
visualisation for testing joined VISSOFT once the venues
merged. The same explanation we found for papers devoted
to visualisation for maintenance tasks that were historically
present in SOFTVIS, and that appear in VISSOFT only when
the venues fused. Although most of the reviewed studies
tackled programming tasks (as shown in Table III) they
concentrate on SOFTVIS’03 and VISSOFT’15, showing little
presence in the rest of the editions. We realise that the



Figure 4. Overview of the complete publication record of SOFTVIS/VISSOFT. The 65 selected papers (out of 346) correspond to design studies.

result provides a good overview of the degree of attention
that each development concern has had, but since many
different visualisation techniques are proposed within each
type, it provides little help to practitioners to find a suitable
visualisation for their specific needs.

B. Need

In Table VII we present the developer needs that we
identified from studies. Although some studies tackle more
than one need we report the most representative one (the
complete set of needs is available online??). On the one
hand, we found that 75% of studies (i.e., 49) describe envi-
sioned user needs by explicitly posing questions that can be
answered using the proposed visualisation, such as “what
the software is doing when performance issues arise?” [S49],
“what does this called method do?” [S56]. On the other hand,
in 25% of studies (i.e., 16) there was no explicit question

formulation. In such cases, we identified the goals that the
proposed visualisation achieve, examples of them being “to
assist designers of scheduling-based, multi-threaded, out-of-
core algorithms” [S40], “to get a better insight into the control
or data flow inside a program” [S1]. Although questions
allow users to assess whether a visualisation is useful, we
realise that uncategorised questions hinder the reuse of
visualisation. We tackle this issue with a classification of
needs based on problem domains. A detailed analysis is
provided in Section IV.

C. Audience

Software developers play specific roles such as interaction
designer, solution architect, GUI designer, requirements an-
alyst, release coordinator. In contrast, as shown in Table IV,
63% of the studies (i.e., 41) envisioned a generic audience
described as maintainer, programmer, developer, engineer,



Table II
THE 65 INCLUDED PAPERS IN THE STUDY.

Id Reference Year

[S1]
Kayrebt: An Activity Diagram Extraction and Visualization Toolset
Designed for the Linux Codebase, Georget, L. et al. 2015

[S2] XVIZIT: Visualizing Cognitive Units in Spreadsheets, Hodnigg, K. et al. 2015

[S3]
Vestige: A Visualization Framework for Engineering Geometry-Related Software,
Schneider, T. et al. 2015

[S4]
Hierarchical Software Landscape Visualization
for System Comprehension: A Controlled Experiment, Fittkau, F. et al. 2015

[S5]
Interactive Tag Cloud Visualization of
Software Version Control Repositories, Greene, G.J. et al. 2015

[S6]
Blended, Not Stirred: Multi-concern Visualization of
Large Software Systems, Dal Sasso, T. et al. 2015

[S7] Pixel-Oriented Techniques for Visualizing Next-Generation HPC Systems, Cottam, J. et al. 2015

[S8]
SMNLV: A Small-Multiples Node-Link Visualization Supporting Software Comprehension
by Displaying Multiple Relationships in Software Structure, Abuthawabeh, A. et al. 2015

[S9] Live Visualization of GUI Application Code Coverage with GUITracer, Molnar, A.J. et al. 2015

[S10]
Advancing Data Race Investigation and Classification
through Visualization, Koutsopoulos, N. et al. 2015

[S11] Visual Clone Analysis with SolidSDD, Voinea, L. et al. 2014

[S12]
Polyptychon: A Hierarchically-Constrained Classified
Dependencies Visualization, Daniel, D.T. et al. 2014

[S13]
ChronoTwigger: A Visual Analytics Tool for Understanding Source
and Test Co-evolution, Ens, B. et al. 2014

[S14] Visualizing the Evolution of Systems and Their Library Dependencies, Kula, R.G. et al. 2014
[S15] The visualizations of code bubbles, Reiss, S.P. et al. 2013
[S16] Visualizing software dynamicities with heat maps , Benomar, O. et al. 2013
[S17] DEVis: A tool for visualizing software document evolution, Junji Zhi et al. 2013

[S18]
SourceVis: Collaborative software visualization for
co-located environments , Anslow, C. et al. 2013

[S19] SYNCTRACE: Visual thread-interplay analysis, Karran, B. et al. 2013
[S20] Automatic categorization and visualization of lock behavior, Reiss, S.P. et al. 2013
[S21] Chronos: Visualizing slices of source-code history, Servant, F. et al. 2013
[S22] Visual support for porting large code bases, Broeksema, B. et al. 2011
[S23] Visualising concurrent programs with dynamic dependence graphs, Lonnberg, J. et al. 2011

[S24]
Visual exploration of program structure, dependencies and
metrics with SolidSX, Reniers, D. et al. 2011

[S25] MosaiCode: Visualizing large scale software: A tool demonstration , Maletic, J.I. et al. 2011
[S26] An interactive ambient visualization for code smells, Murphy-Hill, E. et al. 2010
[S27] Exploring the inventor’s paradox: applying jigsaw to software visualization, Ruan, H. et al. 2010

[S28]
Towards anomaly comprehension: using structural compression
to navigate profiling call-trees, Lin, S. et al. 2010

[S29]
Heapviz: interactive heap visualization for program understanding
and debugging, Aftandilian, E.E. et al. 2010

[S30]
Trevis: a context tree visualization & analysis framework
and its use for classifying performance failure reports, Adamoli, A. et al. 2010

[S31] Dependence cluster visualization, Islam, S.S. et al. 2010
[S32] Embedding spatial software visualization in the IDE: an exploratory study, Kuhn, A. et al. 2010
[S33] Visualizing windows system traces, Wu, Y. et al. 2010

[S34]
Zinsight: a visual and analytic environment
for exploring large event traces, de Pauw, W. et al. 2010

[S35] Representing development history in software cities, SteinbrÃijckner, F. et al. 2010
[S36] Case study: Visual analytics in software product assessments, Telea, A. et al. 2009
[S37] Representing unit test data for large scale software development, Cottam, J.A. et al. 2008

[S38]
A catalogue of lightweight visualizations to
support code smell inspection, Parnin, C. et al. 2008

[S39] Streamsight: a visualization tool for large-scale streaming applications, de Pauw, W. et al. 2008
[S40] Stacked-widget visualization of scheduling-based algorithms, Bernardin, T. et al. 2008
[S41] Visualizing Dynamic Memory Allocations, Moreta, S. et al. 2007
[S42] A Visualization for Software Project Awareness and Evolution , Ripley, R.M. et al. 2007
[S43] Experimental evaluation of animated-verifying object viewers for Java, Jain, J. et al. 2006
[S44] Execution patterns for visualizing web services, de Pauw, W. et al. 2006
[S45] Visualizing live software systems in 3D, Greevy, O. et al. 2006

[S46]
Visual exploration of function call graphs for feature location
in complex software systems, Bohnet, J. et al. 2006

[S47] Multiscale and multivariate visualizations of software evolution, Voinea, L. et al. 2006
[S48] CVSscan: visualization of code evolution, Voinea, L. et al. 2005
[S49] Jove: java as it happens, Reiss, S.P. et al. 2005
[S50] Methodology and architecture of JIVE, Gestwicki, P. et al. 2005
[S51] Visual Exploration of Combined Architectural and Metric Information, Termeer, M. et al. 2005
[S52] Visual data mining in software archives, Burch, M. et al. 2005

[S53]
The war room command console: shared visualizations
for inclusive team coordination, O’Reilly, C. et al. 2005

[S54] Visualizing structural properties of irregular parallel computations, Blochinger, W. et al. 2005
[S55] Visualization of mobile object environments, Frishman, Y. et al. 2005
[S56] Towards understanding programs through wear-based filtering, DeLine, R. et al. 2005
[S57] Program animation based on the roles of variables, Sajaniemi, J. et al. 2003
[S58] Visualizing Java in action, Reiss, S.P. et al. 2003
[S59] EVolve: an open extensible software visualization framework, Wang, Q. et al. 2003
[S60] Visualization of program-execution data for deployed software, Orso, A. et al. 2003
[S61] A system for graph-based visualization of the evolution of software, Collberg, C. et al. 2003
[S62] Interactive locality optimization on NUMA architectures, Mu, T. et al. 2003

[S63]
Graph visualization for the analysis of the structure
and dynamics of extreme-scale supercomputers, Zhou, C. et al. 2003

[S64]
KScope: A Modularized Tool for 3D Visualization
of Object-Oriented Programs, Davis, T.A. et al. 2003

[S65] Self-Organizing Maps Applied in Visualising Large Software Collections, Brittle, J. et al. 2003

and user. In the remaining studies the role of the user
was more specific such as project manager (6), architect
(5), designer (3), or tester (2). Less frequent roles were
operation staff, project leader, technical lead, and quality
assurance engineer. Some studies envisioned roles of users
from other fields such as business owner and student. One
study envisioned managers as well as developers pursuing
the same questions “(1) when were the changes made? (2)

Table III
CLASSIFICATION OF PAPERS BASED ON THE TASKS.

Task Reference #

Debugging
S3, S10, S15, S29, S34, S46,

S49, S50, S55, S58, S60
11

Maintenance
S11, S14, S16, S18, S19, S22,
S25, S26, S27, S31, S38, S44,

S48
13

Programming

S2, S5, S7, S9, S20, S23,
S32, S33, S40, S41, S43, S51,
S54, S56, S57, S59, S61, S62,

S63

19

Reverse Engineering
S1, S6, S8, S12, S21, S24,

S28, S35, S45, S47, S52, S64,
S65

13

Software Process Management S4, S17, S36, S42, S53 5
Testing S13, S30, S32, S37, S39 5

Figure 5. Distribution of papers by task in each venue.

what kind of changes have been made? and (3) how does
visit / download time vary over time?” [S17]. Another study
envisioned that their tool would be suitable for “everyone
involved in software development” [S42]. We realised that
a better understanding of the scope of the role that an
audience plays would facilitate adoption of visualisation by
practitioners.

D. Data source

Table V presents various sources of data that are visu-
alised in the studied papers. The most frequent data were
gathered from running system, source code, and version
control system. Less frequently, we found non-traditional
sources such as documentation, IDE changes, and spread-
sheets. Regarding visualisation of source code, the most
frequent language supported was Java, followed by C/C++,
which was supported by half of the studies. Other languages
with little support include Smalltalk and Pascal.

We realise that visualisations have focused on sources of
complex data that are difficult to analyse by other means,
but this also shows that sources of complex data are not
limited to the traditional ones. We also noticed that studies
focus mainly on describing how they modelled data rather
than specifying the source and type of data. For instance,



Table IV
CLASSIFICATION OF PAPERS BASED ON THE AUDIENCE.

Audience Reference #
Architect S12, S25, S36, S48, S51 5
Business Owner S44 1
Designer S26, S40, S44 3

Developer

S3, S6, S7, S11, S12, S16, S17, S18,
S21, S22, S24, S27, S28, S30, S31, S32,
S35, S37, S38, S39, S44, S45, S46, S47,

S48, S51, S53, S55, S56, S60

30

Engineer S31, S45, S50, S52 4
Everyone S42 1d
Maintainer S14, S31, S48, S60 4
Manager S17 1
Operation Staff S44 1
Performance Analyst S34 1
Project Manager S25, S35, S36, S38, S48, S53 6
Practitioner S9 1
Project Leader S22 1
Programmer S20, S26, S29, S44, S49 5
Quality Assurance
Engineer

S10 1

Researcher S64 1
Student S9, S23, S43, S57 4
Technical Leader S53 1
Test Manager S13 1
Tester S44, S48 1

User
S1, S2, S4, S5, S8, S15, S19, S24,

S33, S41, S54, S58, S59, S61, S62, S63,
S65

17

users who are aware of a technique for visualising a stack
trace gathered from a running system can decide whether
their context is similar enough to adopt the visualisation.

Table V
CLASSIFICATION OF PAPERS BASED ON THE DATA SOURCE.

Data source Reference #
Changes S6, S16 2
Documentation S4, S7, S17, S51, S63 5

Running System
S10, S19, S20, S23, S28, S29, S30, S33, S34,
S38, S39, S40, S41, S43, S44, S45, S46, S49,

S50, S54, S55, S59, S60
23

Source Code
S1, S3, S8, S9, S11, S12, S14, S15, S16,

S18, S22, S24, S26, S27, S31, S32, S53, S56,
S57, S58, S64, S65

22

Spreadsheets S2 1
Version Control
System

S5, S13, S21, S25, S35, S36, S37, S42,
S47, S48, S52, S61, S62

14

E. Representation

Describing the representation used in a visualisation is a
complex task. Authors proposing a visualisation use various
strategies to describe the applied techniques. Some used
verbose descriptions ([S42, S45]) by specifying dimensions,
metaphors, marks, and properties of them. Others ([S48,
S51]) opted for concise but sometimes vague descriptions.
We classify the visualisation techniques used in the studies
according to the popular taxonomy proposed by Keim [25].

Table VI presents these categories. We notice that almost
half of the studies (i.e., 30) combine techniques from several
categories. The two most frequent types are Geometrically-

Table VI
CLASSIFICATION OF PAPERS BASED ON THE REPRESENTATION.

Representation Reference #

Dense Pixel

S7, S11, S15, S16, S19, S20, S22,
S24, S25, S31, S33, S34, S36, S38,
S40, S41, S47, S48, S52, S53, S60,

S62

22

Geometrically-Transformed

S3, S4, S8, S12, S13, S14, S16,
S17, S18, S19, S20, S21, S22, S23,
S24, S27, S29, S36, S37, S40, S44,

S45, S49, S52, S54, S61

26

Iconic
S5, S6, S14, S17, S26, S27, S28,

S32, S37, S42, S49, S51, S63, S65
14

Stacked
S1, S6, S10, S11, S16, S18, S24,

S30, S35, S36, S49, S58, S60, S63,
S64

15

Standard 2D/3D
S2, S9, S39, S43, S44, S46, S50,

S55, S56, S57, S59
11

Transformed and Dense Pixel. The former type is fre-
quent because node-link techniques that belong to this
category are profusely used by visualisations that explore
relationships. The latter type contains techniques suitable
for depicting massive data sets.

F. Tool

Table VII summarises the tools collected from the papers.
Normally, they are developed as prototypes to evaluate a
proposed visualisation. Almost all studies (i.e., 98%) intro-
duced a new visualisation tool, but few (i.e., 38%) made
their tool and source code publicly available. The exception
was a tool named Jive [S50, S58]. As one can expect, few
prototypes were maintained and extended over time. The
most notable cases are teaching tools such as jGrasp and
PlanAni. If we consider tools for which current informa-
tion is available, their average lifespan is 3.7 years. We
acknowledge that this value represents only a lower bound,
since it does not consider possible earlier presentations of
the tools. Various studies often used different visualisation
frameworks. OpenGL was the most frequent one used by
eight studies over multiple years. Also, four studies used
Java3D in more than a decade ago. GraphViz was used by
two studies, and more recently, D3 and Roassal were used
in some studies. Twenty other studies used multiple frame-
works, and in thirty-one there were not explicit information.

G. Medium

When Maletic et al. [7] proposed their taxonomy, they
expected that in the future a variety of media would be
used by visualisation techniques, however we found few
studies exploiting this dimension, shown in Table VIII.
Almost 80% of the reviewed studies do not mention the
expected medium on which the visualisation should be
displayed (labelled as not identified). Among the 20% that
explicitly mentioned a medium the majority specified the
standard PC display. However, there were others that in-
dicated diverse media from a small window in a standard
monitor to a wall-display, large multi-touch tables, and a
3D immersive environment.



Table VII
VISUALISATION TOOLS AND NEEDS INTRODUCED BY PAPERS.

Ref. Tool Year Framework Technology Questions and Goals that Motivate Visualisation
[S1] Kayrebt [26] 2015 Extractor, Globsym, Viewer C to get a better insight of the control or data flow inside a program
[S2] XVIZIT [27] 2015 Java FX, Control FX, GraphStream Excel and Numbers spreadsheet are there modules or self-contained computations?
[S3] Vestige 2015 C++, OpenGL - how the computation reached that result?
[S4] ExploreViz 2015 - - which applications are duplicated on multiple nodes?
[S5] ConceptCloud [28] 2015 - SVN, Git which developers collaborate?
[S6] Blended City 2015 Roassal Smalltalk what happened to our system recently?
[S7] Vampir 2015 - HPX C++ how different are work queues on different threads?
[S8] SMNLV 2015 Java 8, Graphisto, abego, NetBeans Visual Library. Java to check guidelines and re-engineering of existing software
[S9] GUITracer [29] 2015 Java 6 Java using AWT, Swing, SWT how the GUI and the underlying code are related?
[S10] RaceView 2015 Eclipse Visualization Toolkit (Zest) C how a specific code location can be reached via function calls?
[S11] SolidSDD [30] 2014 C++, OpenGL C/C++, Java, C# how are clones distributed in system structure?
[S12] Polyptychon 2014 D3 Java how the system is actually organized?
[S13] ChronoTwigger 2014 OpenGL, GLUT, VR Juggler Git what test files changed compared to source files at the beginning of a project?
[S14] - 2014 - Java how the dependency relation between a system and its dependencies evolves?
[S15] Code Bubbles [31] 2013 - Java what other programmers are working on?
[S16] VERSO 2013 - Java what are coworkers working on?
[S17] DEVis [32] 2013 G4P - what kind of changes have been made?
[S18] SourceVis 2013 MT4j, OpenCloud, JFreeChart how many versions contain annotation classes?
[S19] SYNCTRACE 2013 - - where and when a thread waits or releases?
[S20] - 2013 - Java how much time is spent blocking on a specific lock?
[S21] Chronos 2013 Java CVS, SVN, Git when, how, by whom, and why was this code changed or inserted?
[S22] KDevelop [33] 2011 C++ C/C++ which code fragments are affected by a given rewrite rule?
[S23] Atropos [34] 2011 - - how the operations performed during the execution?
[S24] SolidSX [30] 2011 OpenGL, GLUT, FTGL, wxWidgets .NET/VB/C#, Java, Visual C++ to explore large compound attributed graph for program comprehension
[S25] MosaiCode 2011 C++, Qt - what are areas of the code with high code churn?
[S26] Stench Blossom [35] 2010 - Java how widespread the feature envy is?
[S27] Jigsaw [36] 2010 - - what other entities are likely to de- pend on this package?
[S28] ProfVis [37] 2010 - Java to diagnose anomalies in programs based on partial knowledge
[S29] Heapviz 2010 Prefuse toolkit Java how the program works and why it doesn’t work?
[S30] Trevis 2010 Trevis, GraphViz Java where the program spent most time and which methods were called?
[S31] Decluvi 2010 - - helps to quickly identify computations involved in clusters of dependence
[S32] CodeMap [38] 2010 - Java which architectural paradigm is used?
[S33] lviz 2010 OpenJDK 1.6.0 18 (64bit) VDP how the operating system works to examine performance problems?
[S34] Zinsight [39] 2010 - IBM System z how did we get to these events?
[S35] CrocoCosmos 2010 jMonkeyEngine Java what is the history of a piece of code?
[S36] - 2009 - Keil C166 why it was hard to add new features to the existing software?
[S37] SeeTest 2008 Stencil visualization environment - how did the changes from yesterday effect the stability of the project?
[S38] NosePrints 2008 - - where the value was originating from?
[S39] Streamsight 2008 dot IBM System S what kind of hardware interconnect link technology to employ?
[S40] Lumiere 2008 - - to assist designers of scheduling-based multi-threaded algorithms
[S41] MemoView 2007 - - how does the allocator speed depend on type and parameters?
[S42] Paladir 2007 Palantir Java when was the artifact changed?
[S43] jGrasp [40] 2006 - Java to understand concepts of dynamic programming implementation
[S44] IBM WS Navigator 2006 - - where most of the time is being spent?
[S45] TraceCrawler 2006 CCJun Smalltalk which parts of the code are active during the execution of a feature?
[S46] Call Graph Analyzer 2006 GraphViz C/C++ which the important functions for feature understanding are?
[S47] CVSgrab 2006 - - what versions, with these words in the log, were committed by that her?
[S48] CVSscan [41] 2005 - - which parts of the code are unstable?
[S49] Jove [42] 2005 - Java what the software is doing when performance issues arise?
[S50] Jive [43] 2005 - Java runtime comprehension of object-oriented programs
[S51] MetricView [44] 2005 C++, OpenGL, FreeType, wxWindows - what happens If I change this component?
[S52] EPOSee [45] 2005 - - what items have been changed at the same time?
[S53] War Room Console 2005 Java, C++ Java, C/C++ which artifacts are of importance?
[S54] DOT 2005 Java, yFiles library C/C++ to identify optimal parameters to distribute the work on the processors
[S55] Mobile Object Vis. 2005 Java3D - to understand connections in the distributed object network
[S56] FAN 2005 - - what does this called method do?
[S57] PlanAni [46] 2003 Java3D Pascal what part of the array is currently being sorted?
[S58] Jive [43] 2003 - Java how much time each thread spent in each class?
[S59] EVolve [47] 2003 - Java help us to develop compiler optimization
[S60] Gamma/Gammatella 2003 Java, Swing, TreeMap Java Library Java investigate the behavior of deployed software
[S61] GEVOL 2003 - - who was responsible for which parts of the program during which periods?
[S62] - 2003 - - helps users to allocate data onto their dominating nodes
[S63] Flatland 2003 OpenGL - analysis of massively parallel supercomputer architectures
[S64] Kscope 2003 Java3D Java to provide an analysis of java programs
[S65] GENISOM 2003 Java3D - to aid programmers in the process of reverse engineering

Table VIII
CLASSIFICATION OF PAPERS BASED ON THE MEDIUM.

Medium Reference #
Immersive 3D
Environment

S13 1

Muti-Touch Tables S18 1

Not Identified

S1, S2, S3, S5, S6, S7, S9, S10,
S11, S12, S14, S15, S16, S17, S19, S20,
S21, S22, S23, S25, S26, S27, S28, S29,
S30, S32, S33, S34, S35, S36, S37, S39,
S40, S41, S43, S44, S46, S47, S49, S50,
S52, S54, S55, S56, S57, S58, S59, S60,

S61, S62, S65

51

Standard Screen
S4, S8, S24, S31, S38, S42, S45, S48, S51,

S63, S64
11

Wall Display S8, S38, S42, S53 4

IV. DISCUSSION

In this section we discuss our findings, and we pro-
vide recommendations to practitioners and researchers,

respectively, for adopting visualisations, and for identifying
domains that require more attention

A majority of studies do not follow a specific structure
for describing their proposed techniques. We believe that
following a specific structure (e.g., [7], [9]) encourages
researchers to reflect on important dimensions that should
drive the design of a visualisation tool. Moreover, we believe
that providing a clear description of a research prob-
lem, and formulating explicit research questions ease tool
adoption by practitioners. For instance, instead of a fuzzy
description like “provides an analysis of Java programs”
([S64]) which does not reflect an exact goal, we suggest
a reformulation to “analyse class dependency for validation
of experimental software visualisation techniques".

A. RQ1. What are the characteristics of visualisation tech-
niques that support developer needs?

In section III-A we classified the papers into six high-level
software development tasks (shown in Table III). We note



Table IX
CLASSIFICATION OF PAPERS BASED ON THE NEEDS.

Problem Domain Reference #

Changes

Building
and branching

- 0

Debugging
S3, S15, S23, S29, S32, S34,
S39, S46, S49, S50, S58, S60

12

History
S5, S6, S16, S17, S21, S35,

S37, S42, S47, S48, S52
11

Implementing S3, S39, S43 3
Implications S14, S22, S26, S28, S51, S59 6
Policies - 0
Rationale S61 1
Refactoring - 0
Teammates S16, S18 2
Testing S3, S32, S38, S64 4

Element
relationship

Architecture
S4, S11, S13, S25, S32, S36,

S63, S65
8

Contracts S8 1
Control flow S1, S45 2
Data flow S1 1

Dependencies
S2, S8, S12, S24, S27, S31,

S55, S56
8

Type
relationships

- 0

Elements

Concurrency S7, S10, S19, S20, S23, S40 6
Intent
and implication

S32, S53, S56 3

Location S9, S32, S45, S57 4
Method
properties

- 0

Performance
S30, S33, S34, S39, S41, S44,

S54, S62
8

that different visualisation is proposed to tackle developer
needs that are classified in the same task. Hence, we argued
that such a classification does not provide an appropriate
support for practitioners to find and adopt a suitable visual-
isation for their specific needs. We realise that practitioners
require a more fine-grained classification that links existing
visualisation techniques to their concrete needs.

We propose to classify the papers into multiple prob-
lem domains based on various types of questions that
developers ask during software development [16]–[18]. Such
questions reflect developer needs and we believe mapping
them to existing visualisation techniques provides a better
support for practitioners to adopt a visualisation in their
daily tasks. We applied the classification proposed by La-
Toza et al. [48]. It comprises 21 problem domains which
they used to categorise 94 types of questions. According
to our investigation, this classification offers an appropri-
ate granularity to accommodate the questions from other
studies too. Hence, we classified the 65 included papers by
identifying problem domains that contain similar types of
questions to the needs extracted from the papers (shown
in Table VII). In studies which we extracted a goal instead
of a question, we inferred the problem domain from other
types of questions that would help users to achieve that
goal. Table IX presents the obtained results.

While few problem domains in the classification (like de-
bugging and testing) seem to be a task by themselves, they
also occur very often in the context of addressing different

tasks. That is, a visualisation proposed to support questions
regarding performance during a maintenance task (e.g.,
“where is most of the time being spent?” [S44]) may differ
from the one proposed for performance questions that arise
during a debugging session (e.g., “what are these event pair
sequences?” [S34]). Figure 6 shows the mapping between
the problem domains and the types of visualisation tech-
niques. In it, problem domains are labelled. The ones in the
same category are vertically aligned (left-to-right changes,
element relationships, and elements). The colours of the
tiles encode the type of visualisation technique used by
studies tackling that domain. Problem domains that did
not match any studies are shown in black. The size of
a tile is proportional to the number of studies classified
in that domain. Looking at the distribution of visualisa-
tion techniques across the types of problem domains (i.e.,
changes, element relationships and elements) we do not
perceive a preferred one. Instead, we observe that dense
pixel and geometrically-transformed are the most frequent
techniques used in the main problem domains such as
history, debugging, performance. In contrast, iconic tech-
niques are present in only a few domains, but when present
they predominate over other techniques such as history,
implications and testing. Iconic techniques enforce com-
parison of multivariate data by mapping their properties to
the various dimensions of a glyph (including its position).
Questions regarding the history domain frequently involve
the time which is commonly mapped to the position.
We think that this is the reason why most visualisations
proposed to tackle needs in the history domain include
iconic techniques.

B. RQ2. How well are various problem domains supported
by visualisation?

We estimate the importance of a problem domain for
practitioners based upon a previous study conducted by
LaToza et al. [48]. The more types of questions a problem
domain contains, the more important that domain is for
developers. The double bar-chart in Figure 7 compares the
importance of developer needs (red axis on top) versus
the number of visualisation techniques that address these
needs (grey axis at bottom). Problem domains (at left)
are coloured to encode the category that they belong
to (changes in green, element relationships in red, and
elements in blue), and are sorted decreasingly from the
most important one for practitioners.

We learned that practitioners are more concerned about
changes, while existing visualisations distribute their at-
tentions among all three categories. Some problem do-
mains (e.g., rationale, intent, implementation, and refac-
toring) are very important for developers but have little
visualisation support. In contrast, several less important
problem domains (e.g., history, performance, concurrency
and dependencies) received a good degree of attention. We
wonder why some are not supported? We conjecture that
less well-supported domains tackle problems that require



Figure 6. Mapping type of visualisation used by studies to problem
domains.

hidden semantics to be inferred from software artefacts, so
proposing a visualisation is difficult.

C. Threats to Validity

The main threat to the validity of our study is bias in
paper selection. We did not include papers from other
venues. We mitigated this threat by selecting peer-reviewed
papers from the most cited venues that dedicate to software
visualisation. Moreover, we included design studies and
excluded other types of papers. However, since most of
papers do not specify their types, we may have missed
some. We mitigated this threat by defining a cross-checking
procedure and criteria for paper type classification. Finally,
the data extraction process could be biased. We mitigated
this by establishing a protocol to extract the data of each
paper equally; and by maintaining a spreadsheet to keep
records, normalise terms, and identify anomalies.

V. CONCLUSION

In this paper we studied 65 publications in academia that
describe how visualisation techniques can help developers
to carry out their tasks, and we investigated how well
practitioner needs are supported by existing visualisation
techniques. On the one hand, we analysed research that
describes complex questions that practitioners often ask
during software development. On the other hand, we re-
viewed the literature looking for the needs that benefit
from particular visualisations. We compared the degree
of importance of need in various problem domains for
practitioners to the visualisation support available for those

Figure 7. Comparing the degree of importance of developer needs vs.
their visualisation support by problem domain.

domains. We found a disconnect between the problem
domains on which visualisation have focused and the
domains that get the most attention from practitioners. We
realised some problem domains such as rationale, intent
and implementation, refactoring, implementing, contracts,
and policies require more attention from the visualisation
community; while a good amount of work devoted to
history, performance, concurrency and dependencies. This
paper makes the following contributions:

• A study of the characteristics of existing research in the
field of software visualisation.

• An analysis of the relation between practitioner needs
and current visualisation techniques.

We observe that as researchers in the field we lack a
method to delimit the art and science inherently involved
in developing visualisation tools and techniques. We need a
systematic way to develop software visualisations that eases
their adoption by practitioners. Consequently, we plan to
expand this work by proposing such a method.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Analysis” (SNSF project No. 200020-162352, Jan 1,
2016 - Dec. 30, 2018). Merino has been partially funded by
CONICYT BCH/Doctorado Extranjero 72140330.



REFERENCES

[1] R. Theron, A. Gonzalez, and F. J. Garcia, “Supporting the understand-
ing of the evolution of software items,” in Proceedings of the 4th ACM
symposium on Software visualization. ACM, 2008, pp. 189–192.

[2] W. De Pauw, S. Krasikov, and J. Morar, “Execution patterns for visual-
izing web services,” in Proceedings ACM International Conference on
Software Visualization (SoftVis’06). New York NY: ACM Press, Sep.
2006.

[3] W. De Pauw and S. Heisig, “Zinsight: a visual and analytic
environment for exploring large event traces,” in Proceedings of the
5th international symposium on Software visualization, ser. SOFTVIS
’10. New York, NY, USA: ACM, 2010, pp. 143–152. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879233

[4] Y. Park and C. Jensen, “Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers,” in Visualizing
Software for Understanding and Analysis, 2009. VISSOFT 2009. 5th
IEEE International Workshop on. IEEE, 2009, pp. 3–10.

[5] N. Faltin, “Structure and constraints in interactive exploratory algo-
rithm learning,” in Software Visualization. Springer, 2002, pp. 213–
226.

[6] S. P. Reiss, “JOVE: Java as it happens,” in Proceedings of SoftVis
2005(ACM Symposium on Software Visualization), 2005, pp. 115–124.

[7] J. I. Maletic, A. Marcus, and M. Collard, “A task oriented view
of software visualization,” in Proceedings of the 1st Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2002).
IEEE, Jun. 2002, pp. 32–40.

[8] M. Schots and C. Werner, “Using a task-oriented framework to charac-
terize visualization approaches,” in Software Visualization (VISSOFT),
2014 Second IEEE Working Conference on. IEEE, 2014, pp. 70–74.

[9] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the use of
visualization to support awareness of human activities in software
development: a survey and a framework,” in SoftVis’05: Proceedings
of the 2005 ACM symposium on software visualization. ACM Press,
2005, pp. 193–202. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1056018.1056045

[10] H. M. Kienle and H. A. Muller, “Requirements of software visualization
tools: A literature survey,” VISSOFT 2007. 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
pp. 2–9, 2007.

[11] H. Padda, A. Seffah, and S. Mudur, “Visualization patterns: A context-
sensitive tool to evaluate visualization techniques,” in Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th
IEEE International Workshop on. IEEE, 2007, pp. 88–91.

[12] M. Sensalire, P. Ogao, and A. Telea, “Classifying desirable features of
software visualization tools for corrective maintenance,” in Proceed-
ings of the 4th ACM symposium on Software visualization. ACM,
2008, pp. 87–90.

[13] K. Gallagher, A. Hatch, and M. Munro, “A framework for software
architecture visualization assessment,” in VISSOFT. IEEE CS, Sep.
2005, pp. 76–81.

[14] J. Paredes, C. Anslow, and F. Maurer, “Information visualization for
agile software development,” in Software Visualization (VISSOFT),
2014 Second IEEE Working Conference on. IEEE, 2014, pp. 157–166.

[15] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of
software architecture visualization techniques,” Journal of Systems
and Software, vol. 94, pp. 161–185, 2014.

[16] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of
software engineering, ser. SIGSOFT ’06/FSE-14. New York, NY, USA:
ACM, 2006, pp. 23–34. [Online]. Available: http://people.cs.ubc.ca/
~murphy/papers/other/asking-answering-fse06.pdf

[17] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353.

[18] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.

ICSE ’10. New York, NY, USA: ACM, 2010, pp. 175–184. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806828

[19] S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” Technical report, EBSE Technical Report EBSE-
2007-01, Tech. Rep., 2007.

[20] (2016) SoftVis. [Online]. Available: http://dl.acm.org/event.cfm?id=
RE322

[21] (2016) VISSOFT. [Online]. Available: http://ieeexplore.ieee.org/xpl/
conhome.jsp?punumber=1001231

[22] (2016) CORE. [Online]. Available: http://portal.core.edu.au/
conf-ranks/

[23] T. Munzner, “Process and pitfalls in writing information visualization
research papers,” in Information visualization. Springer, 2008, pp.
134–153.

[24] L. Merino. (2016) Replication package. towards actionable
visualisation in software development. [Online]. Available:
http://scg.unibe.ch/research/visualisation-review

[25] D. A. Keim, “Information visualization and visual data mining,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 8,
no. 1, pp. 1–8, 2002.

[26] L. Georget. (2015) Kayrebt. [Online]. Available: https://github.com/
lgeorget/Kayrebt-Dumper

[27] K. Hodnigg. (2015) XVIZIT. [Online]. Available: https://xvizit.
wordpress.com/portfolio/metrics-based-spreadsheet-visualization/

[28] G. Greene. (2015) ConceptCloud. [Online]. Available: http://www.
conceptcloud.org

[29] A. Molnar. (2015) GUITracer. [Online]. Available: https://bitbucket.
org/guiresearch/tools

[30] L. Voinea. (2014) SolidSDD. [Online]. Available: http://www.
solidsourceit.com/index.html

[31] S. Reiss. (2013) Code Bubbles. [Online]. Available: http://cs.brown.
edu/~spr/codebubbles/

[32] J. Zhi. (2013) DEVis. [Online]. Available: https://sites.google.com/
site/junjizhi/devis_tool

[33] B. Broeksema. (2011) KDevelop. [Online]. Available: http://www.
gitorious.org/kdevcpptools/kdevcpptools

[34] J. Lonnberg. (2011) Atropos. [Online]. Available: http://www.cse.hut.
fi/en/research/LeTech/Atropos/

[35] E. Murphy-Hill. (2010) Stench Blossom. [Online]. Available:
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/
master/installables/update_sites/stench_blossom

[36] H. Ruan. (2010) Jigsaw. [Online]. Available: http://www.cc.gatech.
edu/gvu/ii/jigsaw/

[37] S. Lin. (2010) Profvis. [Online]. Available: http://ftaiani.ouvaton.org/
7-software/profvis.html

[38] A. Kuhn. (2010) CodeMap. [Online]. Available: http://github.com/
akuhn/codemap

[39] W. de Pauw. (2010) Zinsight. [Online]. Available: http://researcher.
watson.ibm.com/researcher/view_group.php?id=613

[40] J. Jain. (2006) jGrasp. [Online]. Available: http://www.jgrasp.org/
[41] L. Voinea. (2005) CVSscan. [Online]. Available: http://www.win.tue.

nl/vis1/home/lvoinea/VCN.html
[42] S. Reiss. (2005) Jove. [Online]. Available: http://cs.brown.edu/people/

spr/research/visjove.html
[43] P. Gestwicki. (2005) Jive. [Online]. Available: http://cs.brown.edu/

~spr/research/vizjive.html
[44] M. Termeer. (2005) MetricView. [Online]. Available: http://www.win.

tue.nl/san/projects/empanada/metricview/
[45] M. Burch. (2005) EPOSee. [Online]. Available: http://www.st.uni-trier.

de/eposoft/eposee/
[46] J. Sajaniemi. (2003) PlanAni. [Online]. Available: http://www.cs.uef.

fi/~saja/var_roles/planani/index.html
[47] Q. Wang. (2003) EVolve. [Online]. Available: http://www.sable.mcgill.

ca/evolve/
[48] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about

code,” in Evaluation and Usability of Programming Languages and
Tools, ser. PLATEAU ’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:6.

[Online]. Available: http://doi.acm.org/10.1145/1937117.1937125

http://doi.acm.org/10.1145/1879211.1879233
http://portal.acm.org/citation.cfm?id=1056018.1056045
http://portal.acm.org/citation.cfm?id=1056018.1056045
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://doi.acm.org/10.1145/1806799.1806828
http://dl.acm.org/event.cfm?id=RE322
http://dl.acm.org/event.cfm?id=RE322
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1001231
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1001231
http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/conf-ranks/
http://scg.unibe.ch/research/visualisation-review
https://github.com/lgeorget/Kayrebt-Dumper
https://github.com/lgeorget/Kayrebt-Dumper
https://xvizit.wordpress.com/portfolio/metrics-based-spreadsheet-visualization/
https://xvizit.wordpress.com/portfolio/metrics-based-spreadsheet-visualization/
http://www.conceptcloud.org
http://www.conceptcloud.org
https://bitbucket.org/guiresearch/tools
https://bitbucket.org/guiresearch/tools
http://www.solidsourceit.com/index.html
http://www.solidsourceit.com/index.html
http://cs.brown.edu/~spr/codebubbles/
http://cs.brown.edu/~spr/codebubbles/
https://sites.google.com/site/junjizhi/devis_tool
https://sites.google.com/site/junjizhi/devis_tool
http://www.gitorious.org/kdevcpptools/kdevcpptools
http://www.gitorious.org/kdevcpptools/kdevcpptools
http://www.cse.hut.fi/en/research/LeTech/Atropos/
http://www.cse.hut.fi/en/research/LeTech/Atropos/
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
http://www.cc.gatech.edu/gvu/ii/jigsaw/
http://www.cc.gatech.edu/gvu/ii/jigsaw/
http://ftaiani.ouvaton.org/7-software/profvis.html
http://ftaiani.ouvaton.org/7-software/profvis.html
http://github.com/akuhn/codemap
http://github.com/akuhn/codemap
http://researcher.watson.ibm.com/researcher/view_group.php?id=613
http://researcher.watson.ibm.com/researcher/view_group.php?id=613
http://www.jgrasp.org/
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://cs.brown.edu/people/spr/research/visjove.html
http://cs.brown.edu/people/spr/research/visjove.html
http://cs.brown.edu/~spr/research/vizjive.html
http://cs.brown.edu/~spr/research/vizjive.html
http://www.win.tue.nl/san/projects/empanada/metricview/
http://www.win.tue.nl/san/projects/empanada/metricview/
http://www.st.uni-trier.de/eposoft/eposee/
http://www.st.uni-trier.de/eposoft/eposee/
http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://www.sable.mcgill.ca/evolve/
http://www.sable.mcgill.ca/evolve/
http://doi.acm.org/10.1145/1937117.1937125

