
MetaVis: Exploring Actionable Visualization
Leonel Merino, Mohammad Ghafari, Oscar Nierstrasz

Software Composition Group, University of Bern
Bern, Switzerland

Alexandre Bergel and Juraj Kubelka
PLEIAD, University of Chile

Santiago, Chile

Abstract—Software visualization can be very useful for an-
swering complex questions that arise in the software devel-
opment process. Although modern visualization engines offer
expressive APIs for building such visualizations, developers
often have difficulties to (1) identify a suitable visualization
technique to answer their particular development question, and
to (2) implement that visualization using the existing APIs.
Examples that illustrate the usage of an engine to build concrete
visualizations offer a good starting point, but developers may
have to traverse long lists of categories and analyze examples
one-by-one to find a suitable one.

We propose MetaVis, a tool that fills the gap between
existing visualization techniques and their practical applications
during software development. We classify questions frequently
formulated by software developers and for each, based on
our expertise, identify suitable visualizations. MetaVis uses
tags mined from these questions to offer a tag-iconic cloud-
based visualization. Each tag links to suitable visualizations
that developers can explore, modify and try out. We present
initial results of an implementation of MetaVis in the Pharo
programming environment. The tool visualizes 76 developers’
questions assigned to 49 visualization examples.

I. INTRODUCTION

Software visualization can play an effective role to answer
a number of questions that arise during software devel-
opment. For instance, before “refactoring a legacy software
system”, developers should know “what are the dependencies
of this code?”. Obviously, a visualization on which develop-
ers can identify entities and trace dependencies would help
them to prioritize the tasks that might require more effort.

Though existing visualizations are often characterized by
the types of questions that they are well-suited to answer,
based on our recent research on 65 design study papers in
SOFTVIS/VISSOFT venues, each work introduces a new tool
or technique [1]. That is, developers may need to explore a
long list of existing visualizations to adopt the one that fits
their needs. Consider the case of the Roassal visualization
engine [2] available for Smalltalk. Although it provides 363
examples that developers can adapt, the examples belong
to 36 different visualization categories that are categorized
based on the addressed technique or feature rather than on
development concerns.

We conjecture that the low adoption of visualization is
a direct result of the difficulties that developers experience
in searching for a suitable visualization. We believe that
providing visualization support within IDEs and categoriz-
ing existing techniques in a way that maps to the certain
needs for development tasks is very helpful for developers.

We have performed a small experiment that supports our
hypothesis. We instrumented the Roassal example browser
to monitor the behavior of users who have installed Roassal
recently, and thus have demonstrated their interest in
adopting visualizations. Over the period of one month we
collected the usage behavior of 58 anonymous users. They
showed a trend that confirms our intuition. The top 10
users who browsed the highest number of examples had to
traverse at least 5 categories on average (with a maximum
of 13 categories traversed by a user who tried 60 examples)
before they found an example of interest.

Nevertheless, little research has been carried out to fill
the gap between existing software visualization techniques
and their practical applications. For example, Hassaine et
al. [3] proposed an approach for generating visualizations
specifically for maintenance tasks. Sfayhi and Sahraoui [4]
proposed an approach to derive interactive visualizations
from descriptions of code analysis tasks. Their approach,
however, required developers to use a domain-specific lan-
guage to describe the task. Grammel et al. [5] studied how
information visualization novices construct visualizations.
They analyzed the usage of basic visualization techniques
such as charts and scatter plots. Although these techniques
provide limited support for the analysis of development
concerns, they acknowledge the need for tools that suggest
a potential visualization.

In this paper, we propose MetaVis, a tool for exploring
visualization examples suitable to answer frequent develop-
ment questions. MetaVis offers a tag-iconic cloud-based vi-
sualization to connect frequently recurring and meaningful
words, called tags, retrieved from the collected questions
to icons that represent visualization examples. The tool
allows users to discover and adapt appropriate visualization
examples with the help of tags that are relevant to their
needs. We present initial results of integrating MetaVis
into the Pharo programming environment [6]. Amongst 173
questions that developers frequently ask during software
development, collected from related work, we assigned
76 of them to 49 suitable visualization examples selected
from 363 examples in the Roassal engine. To ease the
reproducibility of our research MetaVis and our data sets
are publicly available [7].

The remainder of the paper is structured as follows:
Section II describes our tool; Section III presents examples
of analyses; Section IV discusses our findings; and Section
V concludes and presents future work.



Figure 1. MetaVis visualization depicts tags, collected from frequent
questions that arise during development, linked to icons of suitable
visualization examples.

II. METAVIS

Figure 1 shows MetaVis visualization that is based on
three main components: (1) a set of developer’s questions,
(2) a set of visualization examples, and (3) the relationships
between the two sets. We now explain these components
and elaborate on how the visualization supports users for
their comprehension.

A. Developer’s Questions

Developers often should answer several questions to
perform a development task. Indeed, a complex task, such
as “refactoring a legacy software system”, is broken down
into some specific questions like “what are the dependencies
between these two packages?”, “who is the owner or expert for
this code?”, etc. Various researchers have mined, analyzed
and thoroughly classified such questions. LaToza and Myers
[8] surveyed 179 seasoned developers who answered “what
hard-to-answer questions about code have you recently
asked?”, and identified 91 types of such questions. Sillito
et al. [9] collected 44 types of questions from two observa-
tional studies: in one study they interviewed 9 computer
science graduate students, and in another, 16 industrial
programmers. Fritz and Murphy [10] also interviewed 11
developers with varying expertise in industry, and gathered
46 types of questions.

We could identify 173 distinct questions from the afore-
mentioned studies. Two authors of this paper (Merino
and Bergel) studied these questions to identify those for

which visualization represents a suitable means to re-
veal an answer. Each participant studied each question
independently. In our experience, questions that aim at
analyzing relationships among entities, comparing metrics
and classifying entities using a certain criteria can benefit
from visualization. At the end, we compared our results
and discussed any conflict. We agreed that out of 173
questions visualization significantly helps to answer 76 of
them (44%) like “how big is this code?”, “where is this method
called or type referenced?”, and “what classes have been
changed most?” just to name a few (the complete list of
these questions is available online [7]). We excluded the 97
remaining questions (shown in Figure 2) for multiple rea-
sons. We mainly excluded questions (1) already supported
by tools part of the standard development environment,
and (2) on which visualization is trivial and gathering
the data represents most of the answer, labeled as Trivial
Visualization, or on which the input data is not available
(e.g., assumptions, intent, policies), labeled as Lack of Data.
We thus excluded (1) questions such as “what are the
arguments to this function?” for which the debugger is
appropriate, “who made a particular change?”, which can
be queried in the versioning control System, or “is this code
tested?” for which a test coverage tool will provide a more
comprehensive analysis, and (2) questions such as “what
parameter values does each situation pass to this method?”,
“how many recursive calls happen during this operation?”,
and “why was it done this way?”. Similar questions from
other studies could be incorporated into our approach by
expanding the set of related tags that represent a given
development concern.

Figure 2. Classification of the 97 excluded questions.

B. Visualization Examples

We take the specific case of the examples that are shipped
with the Roassal visualization engine. Roassal is a general-
purpose visualization engine, which means that it is not
limited to visualization of software concerns. It provides
363 examples that show novice users how various APIs can
be used to obtain a certain visualization. The examples are
organized into 36 categories (e.g., Color Palettes, Interac-
tion, Tree map). Users browse a category and see small



screenshots of its visualization examples. Users can select
an example, inspect its implementation and shape it to their
needs.

We analyzed the 363 examples one by one. Although
examples are not designed specifically for visualization of
software development concerns, we found 49 that provide a
useful starting point on which users can build visualizations
to answer some of the questions identified in II-A.

Identifying which of dozens of questions relate to the
actual need of a developer is a hard task. Consequently,
MetaVis automatically split questions into frequently occur-
ring and meaningful words (e.g., verbs, nouns), called tags,
that we manually relate to suitable visualization examples.
In the following we elaborate on the visualization that we
designed for their exploration.

C. TIC: Tag-Iconic Cloud-Based Visualization

Tag	

Tag	 Tag	Tag	
Tag	

Tag	
Example	

Example	

Tag	

Example	

Figure 3. TIC wireframe composed
of (1) tags from questions, (2) visual-
ization examples, and (3) on-demand
edges that connect tags and exam-
ples.

The TIC visualization
follows Shneidermann’s
visualization mantra [11]:
first users explore an
overview of the cloud of
development concerns to
identify tags of interest,
then they zoom into
details of surrounding
visualization examples,
and finally they obtain
details-on-demand by
selecting an example that
they can modify to fit their
needs. Figure 3 shows the
basic components of the

TIC visualization: (1) tags that encode in their size how
frequently they arise in the set of questions, (2) icons
that represent visualization examples, and (3) on-demand
edges that connect tags to their suitable examples. We use
a force-directed algorithm [12] to lay out the bigraph of
tags and icons. As a consequence, related elements are
clustered together, thus revealing types of visualization
techniques that are suitable to tackle the development
concerns represented by the tags in the neighborhood.
Edges are transparent to avoid cluttering. They are revealed
on demand when users hover over a tag or an icon.

We chose the tag cloud technique to ease the com-
prehension of our visualization. Its popularity makes it
self-explanatory. However, we reflected that in a tag cloud
typically the positions of tags do not encode data. We
decided then to group tags by development concerns. We
expect that this will encourage users to discover suitable
visualizations proposed for other needs within the concern.

The TIC visualization can also be used to tackle problems
in other domains. We consequently classify it using the
five dimensions proposed by Maletic et al. [13] to ease
its reuse. The task tackled by our visualization is the
exploration of appropriate visualization examples to answer

development questions; the audience of this visualization
are software developers who want to adopt visualization
techniques for software analysis; the target data consists
of a set of questions, a set of visualization examples, and
a relation between questions and suitable examples for
answering them; the representation is a tag-iconic cloud-
based visualization that can be classified as iconic-based
according to Keim’s taxonomy [14]; and the medium used to
display the visualization is a high-resolution monitor with
at least 2560 x 1440 pixels.

D. Implementation

We realized a prototype tool implementation of MetaVis
in Pharo. [6] The tool is based on the Roassal visualization
engine and builds upon the GTInspector tool [15], which
provides users with navigation and basic interactions (e.g.,
zoom-in/out, pop-up, view center), and GTSpotter [16],
which is used to search less frequent tags that can be
difficult to find visually. MetaVis supports the following
workflow: (1) users explore the cloud and select a visu-
alization of their interest, (2) they inspect the associated
code example and adapt it for their needs, and finally (3)
they are able to put it into action and view the outcome
visualization.

III. ANALYSIS EXAMPLE

In this section we present some sample questions from
the literature, and show how MetaVis helps us to identify
suitable visualizations to answer these questions.

A. Who is the owner or expert for this code? [8]

We observe that owner and expert are not frequent tags
in our data set, hence their corresponding tags are difficult
to find at first sight and require us to search for them.
When we search for owner, two results owner and ownership
are returned. Once we select the first tag, the visualization
centers and highlights it. We then follow three steps shown
in Figure 4 (top): 1) we select one of the visualization
examples that is linked to the selected tag (left pane);
2) the code example of the selected visualization appears
in the center pane. We modify the source code towards
the analysis of code authorship. In particular, we add line
4 to collect all distinct authors of the set of classes, add
lines 5-6 to create an object that returns a different color
for each author, and modify line 7 to assign those colors to
methods based on their author; 3) we obtain a visualization
(right pane) that shows classes with their methods colored
according to their authors.

B. Where is this method called or type referenced? [9]

We identify two potential tags in this question: method
and called. In Figure 4 (bottom) we show the sequence
of steps performed. The visualization pane (left) shows
the tags that we spot at first glance since they are quite
common. We select one depicting a node-base diagram
of the linked visualization examples and inspect its source



Figure 4. Two examples of the usage of MetaVis. On the top, we use it to answer “who is the owner or expert of this code?”. The left pane shows the
exploratory visualization that links a visualization to tags retrieved from questions. In the example, we look for owner, select a visualization example
and start modifying its source code (center pane) to identify the authors of the various methods of classes. The resulting visualization is shown in the
right pane. At the bottom, we aimed at answering “where is this method called or type referenced?”. For this example we just needed to add interaction
to nodes to highlight the outgoing edges representing dependencies.

code. Although the example already includes the main ele-
ments required in the analysis (classes, dependent classes,
relationships), the number of edges depicted obstruct the
analysis of dependencies of a particular class. We add in-
teraction to the class nodes to highlight their dependencies
when we hover over one of the classes.

IV. DISCUSSION

During the analysis of questions that were good candi-
dates for visualization, we identified three key groups of
questions:

1) Relating Some questions sought to analyze relation-
ships among software artifacts such as types, methods, ob-
jects, exceptions, and libraries. For example “what depends
on this code?”, “how are these types related?”. We found that

suitable visualizations for this group are based on node-link
diagrams, parallel coordinates [17], and Sunburst [18].

2) Weighting Certain questions tried to weigh entities for
comparison. Examples are “how big is this code?”, “which
part of this code takes the most time?”. The visualizations
that we found suitable for them were mostly based on
simple charts, TreeMap [19], and Polymetric Views [20].

3) Identifying Other questions aim to identify entities
such as software artifacts, or people involved in develop-
ment tasks. Examples are “who is using that API?”, “who
implements this interface?”. We recognize multiple visualiza-
tion techniques suitable to tackle such questions, therefore
we do not identify a particular preferred technique.

We observe that detecting what visualization techniques
are frequently proposed to answer a particular group of
questions (e.g., relate, weigh, identify) suggests a future
work direction on automating the process of visualization.



A. Limitations

A general limitation of MetaVis is bias in the choice and
size of the set of development questions, in the set of
visualization examples, and in the relationships between
them. We mitigated these limitations by building the set
of questions from relevant research in the field, collecting
examples from a visualization engine developed by a highly
active community, and discussing the relationships (manu-
ally assigned) between two authors of this paper. Regarding
the TIC visualization technique, the size of the tags across
multiple development concerns makes less frequent ones
difficult to find visually. We observe that this issue can be
mitigated by providing users with independent clouds for
each development concern. Also the choice of words used
to formulate the selected questions can affect the discov-
erability of development concerns; normalizing words and
unifying synonyms could alleviate that issue.

V. CONCLUSION AND FUTURE WORK

Although large numbers of visualization techniques have
been proposed, and much research has investigated their
effective use, little support is available for developers seek-
ing a suitable visualization for their task at hand.

We have studied related work and have collected ques-
tions that programmers frequently ask during software
development. We manually mapped these questions to
suitable visualization examples. We designed a tag-iconic
cloud-based visualization that relates frequent tags re-
trieved from questions and links them to appropriate visu-
alization examples. Developers explore the cloud, identify
important tags for their particular needs, and find suitable
examples that they can customize.

We plan to (1) evaluate the tool with developers using
a larger set of questions and enriched visualizations, and
(2) investigate classifications of development concerns and
suggested visualizations from the field towards automating
the construction of visualization.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project
“Agile Software Analysis” (SNSF project No. 200020-
162352, Jan 1, 2016 - Dec. 30, 2018). Leonel Merino
has been partially funded by CONICYT-BCH/Doctorado
Extranjero/2013-72140330. Juraj Kubelka is supported by
a Ph.D. scholarship from CONICYT, Chile. CONICYT-
PCHA/Doctorado Nacional/2013-63130188.

REFERENCES

[1] L. Merino, M. Ghafari, and O. Nierstrasz, “Towards actionable
visualisation in software development,” in VISSOFT’16: Proceedings
of the 4th IEEE Working Conference on Software Visualization.
IEEE, 2016. [Online]. Available: http://scg.unibe.ch/archive/papers/
Meri16a.pdf

[2] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval, “Agile
visualization with Roassal,” in Deep Into Pharo. Square Bracket
Associates, Sep. 2013, pp. 209–239.

[3] S. Hassaine, K. Dhambri, H. Sahraoui, and P. Poulin, “Generating
visualization-based analysis scenarios from maintenance task de-
scriptions,” in Visualizing Software for Understanding and Analysis,
2009. VISSOFT 2009. 5th IEEE International Workshop on. IEEE, 2009,
pp. 41–44.

[4] A. Sfayhi and H. Sahraoui, “What you see is what you asked for:
An effort-based transformation of code analysis tasks into interactive
visualization scenarios,” in Source Code Analysis and Manipulation
(SCAM), 2011 11th IEEE International Working Conference on. IEEE,
2011, pp. 195–203.

[5] L. Grammel, M. Tory, and M.-A. Storey, “How information visualiza-
tion novices construct visualizations,” IEEE transactions on visualiza-
tion and computer graphics, vol. 16, no. 6, pp. 943–952, 2010.

[6] (2016) Pharo. [Online]. Available: http://www.pharo.org
[7] L. Merino. (2016) MetaVis. [Online]. Available: http://scg.unibe.ch/

research/meta-vis
[8] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about

code,” in Evaluation and Usability of Programming Languages and
Tools, ser. PLATEAU ’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:6.
[Online]. Available: http://doi.acm.org/10.1145/1937117.1937125

[9] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of
software engineering, ser. SIGSOFT ’06/FSE-14. New York, NY, USA:
ACM, 2006, pp. 23–34. [Online]. Available: http://people.cs.ubc.ca/
~murphy/papers/other/asking-answering-fse06.pdf

[10] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 175–184. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806828

[11] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in IEEE Visual Languages, College Park,
Maryland 20742, U.S.A., 1996, pp. 336–343.

[12] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Softw. Pract. Exper., vol. 21, no. 11, pp.
1129–1164, Nov. 1991. [Online]. Available: http://dx.doi.org/10.1002/
spe.4380211102

[13] J. I. Maletic, A. Marcus, and M. Collard, “A task oriented view
of software visualization,” in Proceedings of the 1st Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2002).
IEEE, Jun. 2002, pp. 32–40.

[14] D. A. Keim and H.-P. Kriegel, “Visualization techniques for mining
large databases: A comparison,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 8, no. 6, pp. 923–938, 1996.

[15] A. Chiş, T. Gîrba, O. Nierstrasz, and A. Syrel, “GTInspector: A
moldable domain-aware object inspector,” in Proceedings of the
Companion Publication of the 2015 ACM SIGPLAN Conference on
Systems, Programming, and Applications: Software for Humanity,
ser. SPLASH Companion 2015. New York, NY, USA: ACM, 2015,
pp. 15–16. [Online]. Available: http://scg.unibe.ch/archive/papers/
Chis15b-GTInspector.pdf

[16] A. Syrel, A. Chiş, T. Gîrba, J. Kubelka, O. Nierstrasz, and
S. Reichhart, “Spotter: towards a unified search interface in IDEs,”
in Proceedings of the Companion Publication of the 2015 ACM
SIGPLAN Conference on Systems, Programming, and Applications:
Software for Humanity, ser. SPLASH Companion 2015. New
York, NY, USA: ACM, 2015, pp. 54–55. [Online]. Available: http:
//scg.unibe.ch/archive/papers/Syre15a-SpotterPosterAbstract.pdf

[17] A. Inselberg and B. Dimsdale, “Parallel coordinates,” in Human-
Machine Interactive Systems. Springer, 1991, pp. 199–233.

[18] J. T. Stasko, R. Catrambone, M. Guzdial, and K. Mcdonald, “An eval-
uation of space-filling information visualizations for depicting hier-
archical structures,” International Journal Humain-Computer Studies,
vol. 53, no. 5, pp. 663–694, 2000.

[19] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling approach
to the visualization of hierarchical information structures,” in VIS ’91:
Proceedings of the 2nd conference on Visualization ’91. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1991, pp. 284–291.

[20] M. Lanza and S. Ducasse, “Polymetric views—a lightweight visual
approach to reverse engineering,” Transactions on Software Engineer-
ing (TSE), vol. 29, no. 9, pp. 782–795, Sep. 2003. [Online]. Available:
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf

http://scg.unibe.ch/archive/papers/Meri16a.pdf
http://scg.unibe.ch/archive/papers/Meri16a.pdf
http://www.pharo.org
http://scg.unibe.ch/research/meta-vis
http://scg.unibe.ch/research/meta-vis
http://doi.acm.org/10.1145/1937117.1937125
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://doi.acm.org/10.1145/1806799.1806828
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://scg.unibe.ch/archive/papers/Syre15a-SpotterPosterAbstract.pdf
http://scg.unibe.ch/archive/papers/Syre15a-SpotterPosterAbstract.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf

