
Hermion - Exploiting Runtime
Information in the IDE

David Röthlisberger
Software Composition Group
University of Berne

IDEs focus on static structure

• Message sends?
• Variable accesses?
• Dynamic references?
• Polymorphism?
• Late binding?

Example: Implementors of a
Method

OBColumn >> children
 ^fan children

Static implementors Dynamic implementors

Dynamic Information I
 Precise knowledge about senders,

implementors of methods
 Often just one single candidate

 But we can do even more!

Dynamic Information II
 Precise type information for variables:

 Dynamic references:

 Polymorphism becomes visible:

Integrating the Information I
 Directly embedded in source code:

Integrating the Information II
 Embed dynamic tools tightly in IDE:

Demo

How to Gather the Information?
 Reason about message sends, variable

accesses
 Ie. sub-method elements
 But: Too much data!

(up to millions of events)
 Precise selection of desired information

crucial
Reflectivity

Reflectivity

• Precisely select where reifications should
occur, eg. only in specific classes

• Selection done in IDE

Defining Reifications

self refers to the collector metaobject

Links for sends and variables:
sendLink:=GPLink new metaObject: self;
 selector: #message:receiver:args:;
 control: #before
 arguments: #(node receiver arguments).

varLink := GPLink new metaObject: self;
 selector: #variable:value:;
 control: #before;
 arguments: #(node value).

Installing the Links

• At runtime the information is collected in
a database

• The IDE queries this database to display
the dynamic information

aMethod sends do: [:send |
 send link: sendLink].

aMethod variableReads do: [:var |
 var link: varLink].

Hermion - Schema

Hermion - Features
 Analysis of runtime behavior
 Immediate presentation of gathered

information
 Embedded in traditional IDE tools,

enhancing and enriching them
 No gap between runtime analysis and

IDE

Summary
 Dynamic information integrated in the IDE
 Eases navigation and understanding of

software systems
 Bridges the gap between analysis and

development tools

