
Hermion - Exploiting Runtime
Information in the IDE

David Röthlisberger
Software Composition Group
University of Berne



IDEs focus on static structure

• Message sends?
• Variable accesses?
• Dynamic references?
• Polymorphism?
• Late binding?



Example: Implementors of a
Method

OBColumn >> children
   ^fan children

Static implementors Dynamic implementors



Dynamic Information I
 Precise knowledge about senders,

implementors of methods
 Often just one single candidate

 But we can do even more!



Dynamic Information II
 Precise type information for variables:

 Dynamic references:

 Polymorphism becomes visible:



Integrating the Information I
 Directly embedded in source code:



Integrating the Information II
 Embed dynamic tools tightly in IDE:



Demo



How to Gather the Information?
 Reason about message sends, variable

accesses
 Ie. sub-method elements
 But: Too much data!

(up to millions of events)
 Precise selection of desired information

crucial
Reflectivity



Reflectivity

• Precisely select where reifications should
occur, eg. only in specific classes

• Selection done in IDE



Defining Reifications

self refers to the collector metaobject

Links for sends and variables:
sendLink:=GPLink new metaObject: self;
           selector: #message:receiver:args:;
           control: #before       
           arguments: #(node receiver arguments).

varLink := GPLink new metaObject: self;
            selector: #variable:value:;
            control: #before;
            arguments: #(node value).



Installing the Links

• At runtime the information is collected in
a database

• The IDE queries this database to display
the dynamic information

aMethod sends do: [:send | 
         send link: sendLink].

aMethod variableReads do: [:var | 
         var link: varLink].



Hermion - Schema



Hermion - Features
 Analysis of runtime behavior
 Immediate presentation of gathered

information
 Embedded in traditional IDE tools,

enhancing and enriching them
 No gap between runtime analysis and

IDE



Summary
 Dynamic information integrated in the IDE
 Eases navigation and understanding of

software systems
 Bridges the gap between analysis and

development tools


