
5. Testing and Debugging

© O. Nierstrasz

P2 — Testing and Debugging

5.2

Testing and Debugging

Sources

>  I. Sommerville, Software Engineering, Addison-Wesley,

Sixth Edn., 2000.

>  svnbook.red-bean.com

>  www.eclipse.org

© O. Nierstrasz

P2 — Testing and Debugging

5.3

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.4

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.5

Testing

Unit testing:
 test individual (stand-alone) components

Module testing:
 test a collection of related components (a module)

Sub-system testing:
 test sub-system interface mismatches

System testing:

(i) test interactions between sub-systems, and

(ii) test that the complete systems fulfils functional
and non-functional requirements

Acceptance testing
(alpha/beta testing):
 test system with real rather than simulated data.

Testing is always iterative!

© O. Nierstrasz

P2 — Testing and Debugging

5.6

Regression testing

Regression testing means testing that everything that used to work still
works after changes are made to the system!

>  tests must be deterministic and repeatable

>  should test “all” functionality

—  every interface (black-box testing)

—  all boundary situations

—  every feature

—  every line of code (white-box testing)

—  everything that can conceivably go wrong!

It costs extra work to define tests up front, but they more than pay off in
debugging & maintenance!

© O. Nierstrasz

P2 — Testing and Debugging

5.7

Caveat: Testing and Correctness

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

—Edsger Dijkstra, 1970

© O. Nierstrasz

P2 — Testing and Debugging

5.8

Testing a Stack

We define a simple regression test that exercises all
StackInterface methods and checks the boundary
situations:

public class LinkStackTest {

protected StackInterface stack;

private int size;

@Before public void setUp() {

stack = new LinkStack();

}

@Test public void empty() {

assertTrue(stack.isEmpty());

assertEquals(0, stack.size());

}

…

© O. Nierstrasz

P2 — Testing and Debugging

5.9

Build simple test cases

Construct a test case and check the obvious conditions:

✎  What other test cases do you need to fully exercise a
Stack implementation?

@Test public void oneElement() {

stack.push("a");

assertFalse(stack.isEmpty());

assertEquals(1, size = stack.size());

stack.pop();

assertEquals(size -1, stack.size());

}

© O. Nierstrasz

P2 — Testing and Debugging

5.10

Check that failures are caught

How do we check that an assertion fails when it should?

@Test(expected=AssertionError.class)

public void emptyTopFails() {

stack.top();

}

@Test(expected=AssertionError.class)

public void emptyRemoveFails() {

stack.pop();

}

© O. Nierstrasz

P2 — Testing and Debugging

5.11

ArrayStack

We can also implement a (variable) Stack using a (fixed-
length) array to store its elements:

✎  What would be a suitable class invariant for ArrayStack?

public class ArrayStack implements StackInterface {

private Object store [] = null;

// default value

private int capacity = 0;

// current size of store

private int size = 0;

// number of used slots

...

© O. Nierstrasz

P2 — Testing and Debugging

5.12

ArrayStack

We can also implement a (variable) Stack using a (fixed-
length) array to store its elements:

✎  What would be a suitable class invariant for ArrayStack?

public class ArrayStack implements StackInterface {

private Object store [];

private int capacity;

private int size;

public ArrayStack() {

store = null;

// default value

capacity = 0;

// available slots

size = 0;

// used slots

}

© O. Nierstrasz

P2 — Testing and Debugging

5.13

Handling overflow

Whenever the array runs out of space, the Stack “grows” by
allocating a larger array, and copying elements to the
new array.

✎  How would you implement the grow() method?

public void push(Object item)

{

if (size == capacity) {

grow();

}

store[++size] = item;

// NB: subtle error!

}

© O. Nierstrasz

P2 — Testing and Debugging

5.14

Checking pre-conditions

NB: we only check pre-conditions in this version!

✎  Should we also shrink() if the Stack gets too small?

public boolean isEmpty() { return size == 0; }

public int size() { return size; }

public Object top() {

assert(!this.isEmpty());

return store[size-1];

}

public void pop() {

assert(!this.isEmpty());

size--;

}

© O. Nierstrasz

P2 — Testing and Debugging

5.15

Adapting the test case

public class ArrayStackTest extends LinkStackTest {

@Before public void setUp() {

stack = new ArrayStack();

}

}

We can easily adapt our test case by overriding
the setUp() method in a subclass.

© O. Nierstrasz

P2 — Testing and Debugging

5.16

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.17

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

The stack trace tells us exactly where the exception occurred ...

java.lang.ArrayIndexOutOfBoundsException: 2

at p2.stack.ArrayStack.push(ArrayStack.java:27)

at p2.stack.LinkStackTest.twoElement(LinkStackTest.java:46)

at ...

© O. Nierstrasz

P2 — Testing and Debugging

5.18

The Run-time Stack

The run-time stack is a fundamental data structure used to record the
context of a procedure that will be returned to at a later point in
time. This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages use a run-time stack:

public static void main(String args[]) {

System.out.println("fact(3) = " + fact(3));

}

public static int fact(int n) {

if (n<=0) { return 1; }

else { return n*fact(n-1) ; }

}

© O. Nierstrasz

P2 — Testing and Debugging

5.19

The run-time stack in action ...

main …

fact(3)=?
 n=3; ...

fact(3)=?
 n=3;fact(2)=?
 n=2;fact(2) ...

fact(3)=?
 n=3;fact(2)=?
 n=2;fact(1)=?
 n=1;fact(1) ...

fact(3)=?
 n=3;fact(2)=?
 n=2;fact(1)=?
 n=1;fact(0)=?
 n=0;fact(0) ...

fact(3)=?
 n=3;fact(2)=?
 n=2;fact(1)=?
 n=1;fact(0)=?
 return 1

fact(3)=?
 n=3;fact(2)=?
 n=2;fact(1)=?
 return 1

fact(3)=?
 n=3;fact(2)=?
 return 2

fact(3)=?
 return 6

fact(3)=6

A stack frame is
pushed with each
procedure call ...

... and popped with
each return.

© O. Nierstrasz

P2 — Testing and Debugging

5.20

The Stack and the Heap

The Heap grows with each
new Object created,

and shrinks
when Objects
are garbage-
collected.

NB: allocating
objects is cheap
on modern VMs

© O. Nierstrasz

P2 — Testing and Debugging

5.21

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.22

Debuggers

A debugger is a tool that allows you to examine the state of a running
program:

>  step through the program instruction by instruction

>  view the source code of the executing program

>  inspect (and modify) values of variables in various formats

>  set and unset breakpoints anywhere in your program

>  execute up to a specified breakpoint

>  examine the state of an aborted program (in a “core file”)

© O. Nierstrasz

P2 — Testing and Debugging

5.23

Using Debuggers

Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

✎  When should you use a debugger?

✔  When you are unsure why (or where) your program is

not working.

NB: debuggers are object code specific — pick the right
one for your platform!

© O. Nierstrasz

P2 — Testing and Debugging

5.24

Debugging in Eclipse

When
unexpected
exceptions
arise, you
can use the
debugger to
inspect the
program
state …

© O. Nierstrasz

P2 — Testing and Debugging

5.25

Debugging Strategy

Develop tests as you program

>  Apply Design by Contract to decorate classes with invariants and pre- and

post-conditions

>  Develop unit tests to exercise all paths through your program

—  use assertions (not print statements) to probe the program state

—  print the state only when an assertion fails

>  After every modification, do regression testing!

If errors arise during testing or usage

>  Use the test results to track down and fix the bug

>  If you canʼt tell where the bug is, then use a debugger to identify the faulty

code

—  fix the bug

—  identify and add any missing tests!

All software bugs are a matter of false assumptions. If you make
your assumptions explicit, you will find and stamp out your bugs!

© O. Nierstrasz

P2 — Testing and Debugging

5.26

Fixing our mistake

We erroneously used the incremented size as an index into the store,
instead of the new size of the stack - 1:

NB: perhaps it would be clearer to write:

public void push(Object item) ... {

if (size == capacity) { grow(); }

store[size++] = item;

assert(this.top() == item);

assert(invariant());

}

store[this.topIndex()] = item;

item

1

0

© O. Nierstrasz

P2 — Testing and Debugging

5.27

Wrapping Objects

Wrapping is a fundamental programming technique for
systems integration.

✎  What do you do with an object whose interface doesnʼt
fit your expectations?

✔  You wrap it.

✎  What are possible disadvantages of wrapping?

client

wrapper

© O. Nierstrasz

P2 — Testing and Debugging

5.28

java.util.Stack

Java also provides a Stack implementation, but it is not compatible with
our interface:

If we change our programs to work with the Java Stack, we wonʼt be
able to work with our own Stack implementations ...

public class Stack extends Vector {

public Stack();

public Object push(Object item);

public synchronized Object pop();

public synchronized Object peek();

public boolean empty();

public synchronized int search(Object o);

}

© O. Nierstrasz

P2 — Testing and Debugging

5.29

A Wrapped Stack

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

✎  Do you see any flaws with our wrapper class?

public class SimpleWrappedStack implements StackInterface {

Stack stack;

public SimpleWrappedStack() { stack = new Stack(); }

public boolean isEmpty() { return stack.empty(); }

public int size() { return stack.size(); }

public void push(Object item) { stack.push(item); }

public Object top() { return stack.peek(); }

public void pop() { stack.pop(); }

}

© O. Nierstrasz

P2 — Testing and Debugging

5.30

A contract mismatch

But running the test case yields:

✎  What went wrong?

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>

...

Caused by: java.util.EmptyStackException

at java.util.Stack.peek(Stack.java:79)

at p2.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)

at p2.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)

...

© O. Nierstrasz

P2 — Testing and Debugging

5.31

Fixing the problem ...

Our tester expects an empty Stack to throw an exception when it is
popped, but java.util.Stack doesnʼt do this — so our wrapper should
check its preconditions!

public class WrappedStack implements StackInterface {

public Object top() {

assert !this.isEmpty();

return super.top();

}

public void pop() {

assert !this.isEmpty();

super.pop();

assert invariant();

}

…

}

© O. Nierstrasz

P2 — Testing and Debugging

5.32

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.33

Timing benchmarks

Which of the Stack implementations performs better?

✎  Complexity aside, how can you tell which implementation strategy
will perform best?

✔  Run a benchmark.

timer.reset();

for (int i=0; i<iterations; i++) {

stack.push(item);

}

elapsed = timer.timeElapsed();

System.out.println(elapsed + " milliseconds for "

+ iterations + " pushes");

...

© O. Nierstrasz

P2 — Testing and Debugging

5.34

Timer

import java.util.Date;

public class Timer {

// Abstract from the

protected Date startTime;

// details of timing

public Timer() {

this.reset();

}

public void reset() {

startTime = new Date();

}

public long timeElapsed() {

return new Date().getTime() - startTime.getTime();

}

}

© O. Nierstrasz

P2 — Testing and Debugging

5.35

Sample benchmarks (milliseconds)

Stack Implementation
 100K pushes
 100K pops

p2.stack.LinkStack
 126
 6

p2.stack.ArrayStack
 138
 3

p2.stack.WrappedStack
 104
 154

✎ Can you explain these results? Are they what you expected?

© O. Nierstrasz

P2 — Testing and Debugging

5.36

Roadmap

>  Testing — definitions and strategies

>  Understanding the run-time stack and heap

>  Debuggers

>  Timing benchmarks

>  Profilers

© O. Nierstrasz

P2 — Testing and Debugging

5.37

Profilers

A profiler tells you where a terminated program has spent
its time.

1.  your program must first be instrumented by

I.  setting a compiler (or interpreter) option, or

II.  adding instrumentation code to your source program

2.  the program is run, generating a profile data file

3.  the profiler is executed with the profile data as input

The profiler can then display the call graph in various
formats

Caveat: the technical details vary from compiler to compiler

© O. Nierstrasz

P2 — Testing and Debugging

5.38

Using java -Xprof

Flat profile of 0.61 secs (29 total ticks): main

 Interpreted + native Method

 20.7% 0 + 6 java.io.FileOutputStream.writeBytes

 3.4% 0 + 1 sun.misc.URLClassPath$FileLoader.<init>

 3.4% 0 + 1 p2.stack.LinkStack.push

 3.4% 0 + 1 p2.stack.WrappedStack.push

 3.4% 0 + 1 java.io.FileInputStream.open

 3.4% 1 + 0 sun.misc.URLClassPath$JarLoader.getResource

 3.4% 0 + 1 java.util.zip.Inflater.init

 3.4% 0 + 1 p2.stack.ArrayStack.grow

 44.8% 1 + 12 Total interpreted

…

© O. Nierstrasz

P2 — Testing and Debugging

5.39

Example of Profiler Features

© O. Nierstrasz

P2 — Testing and Debugging

5.40

Using Profilers

✎  When should you use a profiler?

✔  Always run a profiler before attempting to tune

performance.

✎  How early should you start worrying about performance?

✔  Only after you have a clean, running program with poor

performance.

NB: The call graph also tells you which parts of the program
have (not) been tested!

http://www.javaperformancetuning.com/resources.shtml#ProfilingToolsFree

© O. Nierstrasz

P2 — Testing and Debugging

5.41

What you should know!

✎  What is a regression test? Why is it important?

✎  What strategies should you apply to design a test?

✎  What are the run-time stack and heap?

✎  How can you adapt client/supplier interfaces that donʼt

match?

✎  When are benchmarks useful?

© O. Nierstrasz

P2 — Testing and Debugging

5.42

Can you answer these questions?

✎  Why canʼt you use tests to demonstrate absence of
defects?

✎  How would you implement ArrayStack.grow()?

✎  Why doesnʼt Java allocate objects on the run-time

stack?

✎  What are the advantages and disadvantages of

wrapping?

✎  What is a suitable class invariant for WrappedStack?

✎  How can we learn where each Stack implementation is

spending its time?

✎  How much can the same benchmarks differ if you run

them several times?

License

© Oscar Nierstrasz
 43

Attribution-ShareAlike 2.5

You are free:

•  to copy, distribute, display, and perform the work

•  to make derivative works

•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.

•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Safety Patterns

