
Stéphane Ducasse. Professeurs Boursiers, FNS 2001 1

RECAST: Evolution of Object-Oriented Applications

Dr. Stéphane Ducasse
ducasse@iam.unibe.ch

Abstract

This research project is about reengineering object-oriented applications. Reengineering such
applications inherits complex problems related to software maintenance,i.e., program under-
standing, program analysis, and program transformation and adds to them (1) the complexity
introduced by late binding, dynamic typing, and incremental definition specific to object-oriented
programming, and (2) the complexity related to the new way of software development (multiple
parallel versions, frameworks, and products lines).

Based on our research experience, this research project is structured in three non-orthogonal
directions: (a) reengineering, (b) analysis of versions and (c) migration of object-oriented appli-
cations towards components.

Key words. Software Engineering, Object-Oriented Programming Reengineering, Reverse Engi-
neering, Program Understanding, Architecture, Meta-Model, Code Analysis, Frameworks, Patterns.

1 Introduction

Most of the effort while developing and maintaining a system is spent supporting its evolution [Som96].
This document presents RECAST, a research project whose goal is to support the evolution of object-
oriented applications.

The following two laws due to Manny Lehman illustrate the vision of RECAST. They stress the
fact that software must continuously evolve to stay useful and that this evolution is accompanied by
complexity.

Continuous Changes. “an E-type program1 that is used must be continually adapted
else it becomes progressively less satisfactory”[Leh96]

Increasing Complexity. “As a program is evolved its complexity increases unless work
is done to maintain or reduce it.”[Leh96]

RECAST is based on the vision that supporting evolution of applications will bealwaysmandatory.
This is independent of the language and the paradigm used to develop the applications. Tools and
techniques are necessary to support the evolution of applications.

RECAST structures the research on evolution of object-oriented applications around three direc-
tions as shown in Figure 1.

1E-Type program: a software system that solves a problem or implements a computer application in the real world.

2 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

1 Reengineering and Reverse Engineering

3 Migrating Towards Components

Three Directions for
Supporting Software
Evolution

V1 V1.1 V1.2

2 Analysing Versions

Figure 1: The three research directions composing RECAST: reengineering, version analysis and
component migration.

Reengineering. First it considers thereengineeringaspect of evolution. It addresses questions such
as: how can we understand a large industrial application,i.e., reverse engineer it, how can we
identify problems that hamper evolution, how can we change it,i.e., reengineer the application
to fix those problems.

Versions. Second, it considers multipleversions analysis, i.e., systems are put best understood by
taking into account their evolution over several versions. Hence a temporal dimension is added
and used to understand applications and predict their future.

Migration. Then finally it approaches paradigm shift by investigating how themigrationof object-
oriented systems into component systems can be supported. It introduces the problematic of
supporting the identification, extraction and migration of code in terms of components.

The concrete results we want to obtain within a period of three to four years are the following.

Reengineering - Meta-meta-model. One of the key aspects of this project is the new infrastructure
and meta-model we want to develop. Having an extensible meta-model will support a new range
of work such as the architecture extraction, program understanding, and program analysis and
will allow us to create a synergy between the other research directions. This is why this will be
our first goal, as presented in Section 4.3.1.

Reengineering - Supporting Code Understanding and new IDEs. We want to investigate new
ways of helping programmers to understand code. The idea is to add semantic information to
code fragments and integrate it into new IDEs.

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 3

Version Analysis. We want to use the version information to support the understanding of applica-
tion. As presented in Section 4.4, we want to be able to analyse versions of a system with our
tool CODECRAWLER.

Component Migration - A Framework for Component Description. We want to work on the
migration of object-oriented code towards components. For this purpose, we want to design a
framework with which different component models can be represented and compared.

Component Migration - Component Identification. We want to gain experience in the identifica-
tion of components within object-oriented code. We plan to apply concept analysis and cluster
analysis techniques as presented in Section 4.5.

Structure of this document. First we start by arguing that evolution and reengineering are key
activities in the life of a software application. We briefly present the specific problems encountered
while reengineering object-oriented code. Second, as the present project is the logical next step in our
research on reengineering, we first present our contributions so far. We explain the long term vision
from which this project takes its roots and we present a precise list of goals for this project. We finish
by stressing the strategic aspects of the project.

2 The Software Development Reality

Software has become the key element in many areas of the computer industry, yet software develop-
ment is a complex endeavor full of pitfalls and traps. Even successful projects are facing problems of
evolution or software aging [Par94]. The persistant character of the problems in software development
led Pressman to coin the expressionchronic afflictionrather thansoftware crisis[Pre94]. Several fac-
tors inherent to software development lead to this situation: thecomplexityof the domain and tasks
modelled, the need forcontinuous adaptation, theproject management and human relationshipissues
and the difficulty of finding out what the customerreally wants.

2.1 Some Software Development Facts.

Software maintenanceis the name given to the process of changing a system after it has been deliv-
ered. Sommerville, referring to studies conducted in the eighties [LS80, McK84], states that large
organizations devoted at least 50% of their total development effort to maintaining existing systems
[Som96]. McKee in [McK84] suggests that maintenance effort is between 65% and 75% of the total
effort. So maintenance remains the most expensive software development activity. However, the term
maintenance is misleading because it gives the impression that this process is just dealing with bug
fixes.

A finer analysis of software maintenance shows that software maintenance is often equivalent to
forward engineering and not only limited to corrective maintenance [LS80], [NP90]. Maintenance
activities have been categorized in three different types as follows (the percentage shows the relative
effort compared with the total maintenance effort) [Som96]:

� Corrective maintenance(17%) is concerned with fixing reported errors in the software,

� Adaptive maintenance(18%) is concerned with adapting the software to a new environment
(e.g.,platform or OS), and

4 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

� Perfective maintenance(65%) is concerned with implementing new functional or non-functional
requirements.

Clearly most software development “maintenance” is about supporting the evolution of software.
Among the reasons that lead to software decay, the most important ones are linked with the dy-

namics of software itself. Lehman and Belady derived from empirical observations a set of software
evolution Laws. As presented in the introduction, Lehman’s Laws identify deep reasons for the ne-
cessity of software evolution [LB85, Leh96]. The first law states that system evolution isinevitableif
the software is successful. It stresses in particular that system requirements will always change so that
a system must evolve if it is to remain useful. One of the reasons for this is that the environment is
changing. The second law states that, as a system is changed, its structure is degraded. So additional
efforts, on top of the ones concerned with the change, have to be expended to prevent and reverse this
degradation.

2.2 Legacy Applications

Before going any further, we have to give a definition of the termlegacy. In the context of software
development, alegacy systemis a piece of software that (1) you have inherited and (2) isvaluablefor
you. Moreover, legacy systems present all the problems of aging software [Par94, Cas98]: original
developers no longer available, outdated development methods, monolithic systems, code bloat, lack
of documentation, misuse of language constructs, and so on.

In fact, developers would love not to reengineer applications, but they are forced to do so. Here
are some reasons that force them to reengineer instead of rewriting systems.

� Legacy systems tend to be huge, so no one developer knows a complete system. After years
requirements are forgotten by the developers and the users. Once the original developers leave,
nobody knows the system anymore. Most of the time the documentation is hopeless or inexis-
tent. This is why rewriting the system is nearly impossible.

� Legacy systems provide revenue to companies, while every new project represents a cost and
contains a risk of failure.

� Customers were satisfied with the previous release until they wanted this new feature; they do
not want to pay for a complete new development.

� Companies have neither the time nor the developers to expend the reconstruction of a system
that is successful, even if its state may prevent any evolution.

2.3 Object-Oriented Applications Reengineering

While the termlegacy systemshas been coined to refer to applications written in Assembler, Cobol,
or Fortran, nowadays it also describes applications written in C++, Smalltalk or Java. Indeed, even
if object-oriented code can support better encapsulation and flexibility, developing applications with
object-oriented technologies requires constant investment to control the intrinsic entropy that accom-
panies any software development. In addition to this, the lack of suitable training, developer turnover
and the use of hybrid languages lead to monolithic systems that are extremely hard to maintain and
sustain their evolution [DD99b, Cas98]. Moreover, as object-oriented technologies favor fast changes
and incremental development, adopters of the technology want to reap these benefits and convert their
monolithic applications into frameworks that are complex yet customizable and capable of evolving

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 5

[JF88]. However, building frameworks is a task that requires iteration, reengineering and careful
redesign [RJ96].

With the advent of eXtreme Programming [Bec99] and other agile development models, practices
such as refactorings that were previously used only in the context of reengineering now play a central
role. The fact that applications are continuously changing requires developers to have tools and tech-
niques to understand, test and change the code to meet the new requirements. This is also the case
with iterative development where the design of an application may change to meet new requirements.
That’s why reengineering object-oriented applications is becoming more and more important.

2.3.1 Specific Problems of Object-Oriented Reengineering

Although the reasons for reengineering a system may vary, the actual technical problems are typically
very similar. There is usually a mix of coarse-grained, architectural problems, and fine-grained, design
problems. Object-oriented legacy systems suffer from the following traditional problems that include
insufficient documentation, improper layering and adaptability, lack of modularity, and duplicated
functionality.

Object-oriented programming promotes encapsulation and information hiding, which in a way
should improve maintenance. However, in addition to the traditional problems enounced before like
duplicated code, reengineering object-oriented languages has its own set of problems [WH92]. We
list here some of the most preeminent.

� Late binding makes traditional tool analyzers like program slicers inadequate. Data-flow ana-
lyzers are more complex to build especially in presence of dynamically typed languages.

� Incremental class definition makes understanding a class more difficult. As the semantics of
self is dynamic, understanding an application is more difficult. This dynamism of self produces
yoyo effects when trying to follow which method will be executed. When an inherited method
is called on an instance of a subclass, ascertaining which methods will be called necessitates
checking if methods have been defined on the subclasses.

� Moreover, languages such as C++ with explicit pointer manipulations and complex syntax re-
quires one to use complex tools and analysis. For example the parser of the SNiFF+ product is
not developed by Sniff developers because of “the too complex C++ syntax” (Sic) [Bis98].

Besides these problems, the most common fine-grained problems occurring in object-oriented
legacy systems are often due to misuse or overuse of object-oriented features. Here is a list of the most
common problems: explicit dispatch,i.e., methods are called by checking the class of the receiver
explicitly instead of using polymorphism, missing inheritance, misplaced operations,i.e., operations
outside instead of inside classes, violation of encapsulation and class abuse,e.g., classes used as
namespaces.

2.4 Summary

To summarize the context and the problems of reengineering, we can say that:

1. reengineering is one of the key activities in software industry;

2. legacy systems exist in any programming languages and paradigm; and

6 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

3. reengineering object-oriented applications is an important research field because legacy sys-
tems developed using object-oriented programming languages already exist and because new
software is being developed in this paradigm.

3 Building on our Previous Experience

RECAST, the project that we propose, is the logical follow-on of our research on reengineering per-
formed in the context of the Esprit Project FAMOOS NÆ 21975 and three Swiss National Science
Foundation projects. We now present our accomplishments.

Contributions. Our contributions are the publication of refereed papers and theses, and the imple-
mentation of prototypes that we validated on large concrete industrial applications.

Definition of a language independent meta-model (FAMIX) [DDT99b, TDDN00, DTD01, DT01].
We needed to analyze several different object-oriented languages such as Smalltalk, Java, and
C++. We designed a language independent meta-model representing the main elements of
object-oriented programming languages. We put emphasis on it being extensible.

Implementation of a reengineering environment (MOOSE) [TDD00, DLT00, DLT01]. To support
our research we developed a reengineering environment based on the meta-model we specified.
It includes the possibility to analyze multiple models, to define dedicated program analyzers,
and to load and save meta-models from different languages.

Evaluation of metric use in reengineering [DD99a, DDN00a, DLS00]. We evaluated how software
metrics can support a reengineering effort. From our studies, we concluded that metrics are not
reliable for detecting design flaws, that metrics are a good indicator of systems stabilization,
and that they can be used to discover refactorings.

Reverse engineering large applications (CODECRAWLER) [DDL99, DL01]. We developed an ap-
proach and a tool to support the reverse engineering of large systems. The idea is to display
software entities as nodes of simple graphs but to semantically enrich the obtained with metrics
that describe the represented entities.

Understanding of fine grained code elements [LD01] We developed a new approach, calledthe
class blueprint, to understand classes. It is based on calling relationships and a layered vi-
sualization. We developed a categorization of blueprints.

Detection of code duplication (DUPLOC) [DRD99, RDG99] We developed a technique for identi-
fying duplicated code. Our approach is based on textual analysis but is nevertheless largely
language independent. We applied it to applications written in Pascal, C++, C, Cobol, APL,
Java and Smalltalk.

Use of dynamic information for extracting behavioral views [RDW98, RD99, RD01, Duc99, Duc97]
We developed an iterative approach based on the mixing of dynamic information and static in-
formation specified by the meta-model we developed. Views of a system can be created and
refined incrementally.

Language independent refactorings [TDDN00, Tic01, TD01] Refactorings are behavior preserving
code transformation. Up until now, refactorings has been studied on a per language basis.

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 7

We developed a framework based on the Famix language independent meta-model to evaluate
language independent refactorings and the limits of the approach.

Reengineering patterns [DDT99a, DDN00c, DDN00d, DDN00b, DRN99] Reengineering projects,
despite their diversity, often repeatedly encounter some typical problems and solutions. We
defined a pattern form to transfer reengineering expertise, and recordedreengineering patterns.
Reengineering patterns codify and record knowledge about modifying legacy software: they
help in diagnosing problems and identifying weaknesses which hinder further development of
the system and aid in finding solutions which are more appropriate to the new requirements.

Overall we have published 13 papers in conference and journals on the topic, are finishing a book
published by Morgan Kaufman Publisher on reengineering, made tutorials at OOPSLA and ECOOP,
graduated 3 PhD students, and and act as consultant.

4 RECAST: Evolution of Object-Oriented Applications

4.1 A Vision

As we mentioned in the introduction, the vision of RECAST is that supporting the evolutionof software
applications will always be necessary and that software will always require energy for its maintenance
and evolution. Tools and techniques are then necessary to understand, analyse and restructure appli-
cations. Such applications can be old systems as well as brand new ones for the reasons we exposed
above.

Continuing the thrust of our current research, RECAST is structured around three main directions
namely: reengineering, version analysis and migration towards components as shown by the figure 1.
It reinforces our research on reengineering while opening it to new problems.

4.2 Concrete Goals

Within the directions we described in the introduction, we want to obtain the following concrete results
within a period of three to four years.

� Reengineering - Meta-meta-model.

� Reengineering - Supporting Code Understanding and new IDEs.

� Version Analysis.

� Component Migration - A Framework for Component Description.

� Component Migration - Component Identification.

We now present each of these points in more details.

4.3 Reengineering and Reverse Engineering

Over the years we gained a better understanding of the needs required while reengineering applica-
tions. We want to extend our meta-model to allow the declarative definition of meta entities, and the
generation of automatic functionality. Then we want to work on new ways to understand programs,
to support the extraction of design and architecture.

8 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

4.3.1 Reengineering: A Declarative Meta-Model and Tools

Reasoning about the code entities is absolutely mandatory for reengineering a system. MOOSE, our
reengineering environment, supports it well by allowing code visualization [DDL99] as well as code
refactoring [TDDN00]. However, it is important to represent domain information that does not have
a one-to-one mapping to the source code constructs. For example, Rigi, a reverse engineering tool,
allows one to define a mapping from the code entities to domain entities [Mül86]. However, Rigi does
not support code analysis function such as metrics computation and refactoring.

Year One and Two. Therefore we want to generalize our meta-model to allow the expression of
any kind of entity. For this purpose we will define a meta-meta-model on top of which we
will base our environment. We already experimented with an entity-relation meta-meta-model
similar to the meta-meta-model used in CDIF [Com94]. This first experiment showed us the
feasibility of the idea and its benefits, some tools in our environment were automatically able to
update themselves when new entities were programmed. We plan to evaluate if using the MOF
[OMG97] is more adapted to our needs. In addition we plan to have a declarative definition of
the meta-entities that reengineers themselves can define by direct manipulation without having
to program it. Based on this meta-meta-model we will adapt our tools like CODECRAWLER so
that they automatically update themselves to new entities. This meta-meta-model will serve as
a basis to compute generic metrics automatically.

Year Three and Four. Once this new meta-meta-model is built it will serve our other goals like
extracting design information. First, in a top down approach, we plan to use a logic meta-
programming system such as SOUL [Wuy01] to express rules describing design and architec-
ture and develop an iterative approach like the one developed in the Reflection Model which
allows the reengineer to adapt his hypothesis while extracting the information [MN97]. Sec-
ond, in a bottom-up approach, we will work on the extension of CODECRAWLER [DDL99] to
provide more abstract views based on the use of new entities such as applications, modules,
or components and new relationships such as aggregations. For example, we want to support
the extraction of design information such as UML-like relations that are not represented as con-
structs but represented by various idioms. Another example is that we want to be able to specify
.Net components or CCM components to support higher-level view extraction.

4.3.2 Reengineering: Supporting Code Understanding

Some reengineering aspects like program understanding are close to the iterative software processus.
Most of the time a developer has to understand the code he should enhance or fix. However, it is
fascinating to realize that the majority of the current integrated development environments (IDEs) are
syntacticallyoriented,i.e., they merely highlight some constructs with special colors, advanced ones
allow code navigation such as finding all the implementors or senders of a given method name.

We are convinced that simplesemanticalinformation can be inferred and presented to the devel-
oper to ease code understanding. One of the problems then is that not all the information is relevant
and that there is no predefined information. So the developer is in a situation similar to a doctor who
must propose hypotheses, choose the radiography to be done, and interpret the results.

Year One and Two. We want to work on the definition of simple heuristics that would work like
code property revealers. The heuristics could be as simple as grouping all the methods of a
class that access, directly or indirectly all the instance variables of that class. These heuristics

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 9

should constitute an elementary set of views that can be used and combined by a developer
to understand the code. This research is related to our wish to experiment with new IDEs as
described below.

Year Three and Four. With rapid development life cycle and agile development methodologies,
code understanding and code refactoring practices become increasingly parts of normal devel-
opment and not limited to special reengineering tasks. However, for this to be effective, reengi-
neering tools should not be disconnected from the act of developing software. This implies that
the IDEs used by the developers should integrate reengineering tools as this is the case with
the Refactoring Browser [RBJ97]. This is the reason why we want to conduct research on new
IDEs integrating the results we obtained on code understanding and navigation and evaluate
the impact on development practices. We started to work on how to manipulate and navigate
software artifacts in a uniform way [WD01]. This research should bring us to define new ways
of approaching coding and creating new tools for supporting the developer need.

4.4 Version Analysis

Up until now we only have considered one version of a system at a time. With this research direction
we plan to bring the temporal aspect of the system evolution into consideration. Taking versions
into account fits well with shorter development cycles promoted by iterative development process
because they produce more information and also require tools and information to steer such iterative
development.

Working on version analysis is difficult for two main reasons. One practical difficulty is that
having access to several versions of industrial applications is difficult. Jazayeri et al in [JGR99] for
example could only analyse changes because they only had access to a database change log and not
the code itself. To circumvent this problem we started to collect versions of software such as the
Swing Java framework, the VisualWorks Smalltalk framework, the Microsoft foundation class library
and some open source systems like Squeak. The second reason is that analyzing multiple versions
requires us to be able to analyze huge amounts of information.

Note that this direction does not exist in isolation and we expect to have a lot of synergy between
the results obtained in the reengineering context.

Year One and Two. Due to the system size and complexity, and the proliferation of versions,
developers often have only a partial view of a system. We want to apply the visual approach we
developed [DDL99] to offer views that help the understanding of systems and their evolution.
We foresee a lot of possible views due to the crossing of two aspects namely: the abstraction
level and the temporal evolution.

We sketch some of the information we want to extract:

� Qualification of artifacts.Classes have different behaviors during their life, they can grow
continuously, grow and shrink, disappear, be split or merge with others. Besides the iden-
tification of these behaviors, we want to develop a vocabulary to be able to describe them
and support the understanding of the classes.

� Movements between subsystems.Changes between subsystems provide meaningful infor-
mation about the stability of a subsystem. We expect to find a full range of behaviors.

� Change Correlation.Revealing the correlation between changes can bring to light hidden
aspects of a system [GHJ98].

10 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

Year Three and Four. We have started to empirically evaluate how size metrics can be used to assess
systems [DD99a]. We found that size metrics are not reliable for identifying problematic parts
but can be used to assess the stabilization of a system. Our initial experiment was performed on
three frameworks and we want to generalize this empirical validation to a representative sample
and extend our experiment to other metrics such as coupling and cohesion. Frameworks are
usually extracted from the design of three applications or major variations of a system [JF88,
RJ96]. Frameworks are based on the definition of variation points called hotspots. We want
to evaluate if a metrics analysis can support the identification of hotspots to help framework
development.

4.5 Towards Components

Components are receiving a lot of attention as they provide another level of abstraction. In this context
we want to provide analysis and techniques to support the migration of object-oriented applications
towards component ones. This research direction is the one where we have the least experience so we
plan to approach it using step-by-step experiments. We will also use the expertise of the other SCG
team members with whom we will work.

To evaluate the risk of such a research direction we started some preliminary experiments to see
how Envy applications (a white box way of packaging Smalltalk code) could be transformed into
black box components [AD01]. This helped us to identify the following topics.

Year One and Two. Migrating towards components implies having an adapted component model
that fits the purpose of the migration. Nowadays a profusion of component models exist such as
COM, CCM, EJB or even proprietary models such as the one developed by Dassault Systems
[FDE+01]. We want to design a framework for expressing different models in terms of the
composition of elementary aspects in a similar fashion to the wat that the Actalk model allows
the expression of multiple concurrent object-oriented models [Bri89].

Year Three and Four. Once the target component are defined, analysis and tool support are nec-
essary to support the identification of components [Kos00]. We started some initial experi-
ments [AD01] and applied concept analysis to identify code patterns in object-oriented systems
[SR97, LS97]. We learned that the scalability of the approach has to be addressed. We want to
extend these preliminary results by reducing the scope of the search, by using other techniques
such as cluster analysis [AL99] and by providing tool support.

5 Strategical Aspects

We want to stress some of the strategic aspects of this project: it is based on a community of research,
it tackles really important and recurrent problems and it is concrete research with economic impact.

The Reengineering community. This project does not exist in isolation. We are currently partici-
pating to an international effort to create a European network of research groups working on reengi-
neering. The current network is funded by the Belgium government and is called EVOLUTION
(http://prog.vub.ac.be/poolresearch/FFSE/network.html). A European funded network is under con-
struction. We are in contact with the LORE laboratory of the University of Antwerp and the LSR
group of the University of Grenoble. We are participating in the standardisation of DMM, a meta-
model for reengineering.

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 11

Recurrent is a recurring Task. Reengineering will always be necessary. The Laws of Lehman tend
to be true in any language [Leh96]. The facts are already there, legacy applications in Java already
exist. The research team Adele of the LSR laboratory of IMAG did a reengineering project with
Dassault Systems to help Dassault engineers understand the application they are developing based on
a component technology. LIFIA (Laboratorio de Investigacion y Formacion en Informatica Avanzada)
started a research project to support the reengineering of Web-based applications.

Concrete industry related. This research is linked to concrete problems faced by industry. On
the one hand it is really motivating to solve concrete problems and face real life constraints such as
scalability issues. On the other hand we are conscious that we are the scientific experts, hence we
have to take care and select the scientific problems we want to work on. Within this context, we are
currently trying to have closer relationshipswith companies and evaluating how we could complement
governmental research funding with funding from industry.

6 Conclusion

The RECAST research project attacks complex problems linked with the maintenance and evolution of
industrial software in the particular context of object-oriented programming. The project is based on
the experience we have accumulated over the years but does not limit itself to extending existing work
but also opens new research avenues. It draws on a lot of different topics such as meta-modeling, code
understanding, code visualization, or program analysis and transformation. Hence it provides a rich
research framework but identifies clear short term goals that we will achieve. This project is relevant
both from the point of view of the scientific community on which it is based but also the industrial
context with which we interact.

References

[AD01] G. Arevalo and S. Ducasse. From white box to black box: an experience with envy application,
2001. Working Document.

[AL99] N. Anquetil and T. C. Lethbridge. Experiments with clustering as a software remodularization
method. InWCRE’99 (Sixth Working Conference on Reverse Engineering), pp. 235–256. IEEE,
1999.

[Bec99] K. Beck.Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999. 201616416.

[Bis98] W. Bishoffberger. Private discussions concerning SNiFF+, 1998.

[Bri89] J.-P. Briot. Actalk: A testbed for classifying and designing actor languages in the smalltalk-80
environment. In S. Cook, editor,Proceedings ECOOP’89, pp. 109–129, Nottingham, July 10-14
1989. Cambridge University Press.

[Cas98] E. Casais. Re-engineering object-oriented legacy systems.Journal of Object-Oriented Program-
ming, 10(8):45–52, 1998.

[Com94] C. T. Commitee. Cdif framework for modeling and extensibility. Technical Report EIA/IS-107,
Electronic Industries Association, 1994. See http://www.cdif.org/.

[DD99a] S. Demeyer and S. Ducasse. Metrics, do they really help? In J. Malenfant, editor,Proceedings
LMO’99 (Languages et Modèles à Objets), pp. 69–82. HERMES Science Publications, Paris, 1999.

[DD99b] S. Ducasse and S. Demeyer, editors.The FAMOOS Object-Oriented Reengineering Handbook.
University of Berne, 1999. See http://www.iam.unibe.ch/˜famoos/handbook.

12 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

[DDL99] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse engineering platform combining metrics
and program visualization. In F. Balmas, M. Blaha, and S. Rugaber, editors,Proceedings WCRE’99
(6th Working Conference on Reverse Engineering), pp. 175–187. IEEE, 1999.

[DDN00a] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change metrics. InProceedings
of OOPSLA’2000, ACM SIGPLAN Notices, pp. 166–178, 2000.

[DDN00b] S. Demeyer, S. Ducasse, and O. Nierstrasz. A reverse engineering pattern language. InProceedings
of Europlop’2000, 2000.

[DDN00c] S. Demeyer, S. Ducasse, and O. Nierstrasz. Tie code and questions: a reengineering pattern. In
Proceedings of Europlop’2000, 2000.

[DDN00d] S. Demeyer, S. Ducasse, and O. Nierstrasz. Transform conditional: a reengineering pattern lan-
guage. InProceedings of Europlop’2000, 2000.

[DDT99a] S. Demeyer, S. Ducasse, and S. Tichelaar. A pattern language for reverse engineering. In P. Dyson,
editor,Proceedings of the 4th European Conference on Pattern Languages of Programming and
Computing, 1999, Konstanz, Germany, July 1999. UVK Universitätsverlag Konstanz GmbH.

[DDT99b] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not universal. UML shortcomings for
coping with round-trip engineering. In B. Rumpe and R. France, editors,Proceedings of UML’99
(2nd International Conference on The Unified Modeling Language), LNCS 1723, pp. 630–645.
Springer-Verlag, Oct. 1999.

[DL01] S. Ducasse and M. Lanza. Towards a methodology for the understanding of object-oriented sys-
tems.Technique et science informatiques, 20(4):539–566, 2001.

[DLS00] S. Ducasse, M. Lanza, and L. Steiger. A query-based approach to support software evolution. In
ECOOP’2000 International Workshop of Architecture Evolution, 2000.

[DLT00] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible language-independent environ-
ment for reengineering object-oriented systems. 2000. COSET’2000 (International Symposium on
Constructing Software Engineering Tools).

[DLT01] S. Ducasse, M. Lanza, and S. Tichelaar. The moose reengineering environment. The Smalltalk
Chronicles, 2001.

[DRD99] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting dupli-
cated code. In H. Yang and L. White, editors,Proceedings ICSM’99 (International Conference on
Software Maintenance), pp. 109–119. IEEE, September 1999.

[DRN99] S. Ducasse, T. Richner, and R. Nebbe. Type-check elimination: Two object-oriented reengineering
patterns. In F. Balmas, M. Blaha, and S. Rugaber, editors,WCRE’99 Proceedings (6th Working
Conference on Reverse Engineering). IEEE, 1999.

[DT01] S. Ducasse and S. Tichelaar. Lessons learned in designing a platform for software reengineering.
Technical Report, University of Berne, 2001.

[DTD01] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 - the FAMOOS information exchange
model. Technical report, University of Berne, 2001. to appear.

[Duc97] S. Ducasse. Des techniques de contrôle de l’envoi de messages en Smalltalk.L’Objet, 3(4):355–
377, 1997.

[Duc99] S. Ducasse. Evaluating message passing control techniques in Smalltalk.Journal of Object-
Oriented Programming (JOOP), 12(6):39–44, 1999.

[FDE+01] J.-M. Favre, F. Duclos, J. Estublier, , R. Sanlaville, and J.-J. Auffret. Reverse engineering a large
component-based software product. InProceedings of CMSR’2001 (Conference on Software Main-
tenance and Reengineering), pp. 95–104, 2001.

Stéphane Ducasse. Professeurs Boursiers, FNS 2001 13

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product release history.
In Proceedings of the International Conference on Software Maintenance 1998 (ICSM’98), pp.
190–198, 1998.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Programming,
1(2):22–35, 1988.

[JGR99] M. Jazayeri, H. Gall, and C. Riva. Visualizing software release histories: The use of color and third
dimension. InICSM’99 Proceedings (International Conference on Software Maintenance). IEEE
Computer Society, 1999.

[Kos00] R. Koschke.Atomic Architectural Component Recovery for Program Understanding and Evolu-
tion. PhD thesis, Universitat Stuttgart, 2000.

[LB85] M. M. Lehman and L. Belady. Program Evolution - Processes of Software Change. London
Academic Press, 1985.

[LD01] M. Lanza and S. Ducasse. A categorization of classes based on the visualization of their internal
structure: the class blueprint. InProceedings of OOPSLA’2001, 2001.

[Leh96] M. M. Lehman. Laws of software evolution revisited. InProceedings of the European Workshop
on Software Process Technology, pp. 108–124, 1996.

[LS80] B. P. Lientz and E. B. Sawson.Software Maintenance Management. Addison-Wesley, 1980.

[LS97] C. Lindig and G. Snelting. Assessing modular structure of legacy code based on mathematical
concept analysis. InProceegins of ICSE’97. IEEE, 1997.

[McK84] J. R. McKee. Maintenance as a function of design. InProceedings of AFIPS National Computer
Conference, pp. 187–193, 1984.

[MN97] G. Murphy and D. Notkin. Reengineering with reflexion models: A case study.IEEE Computer,
8:29–36, 1997.

[Mül86] H. Müller. Rigi - A Model for Software System Construction, Integration, and Evaluation based on
Module Interface Specifications. PhD thesis, Rice University, 1986.

[NP90] J. T. Nosek and P. Palvia. Software maintenance mamagement: changes in the last decade.Software
Maintenance: Research and Practice, 2(3):157–174, 1990.

[OMG97] Object Management Group. Meta object facility (MOF) specification. Technical Report ad/97-08-
14, Object Management Group, Sept. 1997.

[Par94] D. L. Parnas. Software aging. InProceedings of International Conference on Software Engineer-
ing, 1994.

[Pre94] R. S. Pressman.Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1994.

[RBJ97] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for Smalltalk.Theory and Practice of
Object Systems (TAPOS), 3(4):253–263, 1997.

[RD99] T. Richner and S. Ducasse. Recovering high-level views of object-oriented applications from static
and dynamic information. In H. Yang and L. White, editors,Proceedings ICSM’99 (International
Conference on Software Maintenance), pp. 13–22. IEEE, September 1999.

[RD01] T. Richner and S. Ducasse. Iterative recovery of collaborations and roles in dynamically typed
object-oriented languages. Technical report, University of Berne, 2001.

[RDG99] M. Rieger, S. Ducasse, and G. Golomingi. Tool support for refactoring duplicated oo code. In
Object-Oriented Technology (ECOOP’99 Workshop Reader), number 1743 in LNCS (Lecture
Notes in Computer Science). Springer-Verlag, 1999.

14 Reengineering and Migration of Object-Oriented Applications. Professeurs Boursiers, FNS 2001

[RDW98] T. Richner, S. Ducasse, and R. Wuyts. Understanding object-oriented programs with declarative
event analysis. InObject-Oriented Technology (ECOOP’98 Workshop Reader), number 1543 in
LNCS (Lecture Notes in Computer Science). Springer-Verlag, 1998.

[RJ96] D. Roberts and R. Johnson. Evolving frameworks: A pattern language for developing object-
oriented frameworks. InProceedings of Pattern Languages of Programs (PLOP’96), Allerton
Park, Illinois, 1996.

[Som96] I. Sommerville.Software Engineering. Addison-Wesley, fifth edition, 1996.

[SR97] M. Siff and T. Reps. Identifying modules via concept analysis. InProceedings of International
Conference on Software Maintenance. IEEE, 1997.

[TD01] S. Tichelaar and S. Ducasse. Pull up/push down method: an analysis. Currently submitted to IEEE
Transaction on Software Engineering, 2001.

[TDD00] S. Tichelaar, S. Ducasse, and S. Demeyer. Famix: Exchange experiences with cdif and xmi. 2000.
Proceedings of WOSEF’2000.

[TDDN00] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A meta-model for language-independent
refactoring. InProceedings ISPSE 2000. IEEE, 2000.

[Tic01] S. Tichelaar.Meta-Model for Reengineering. PhD thesis, University of Berne, 2001.

[WD01] R. Wuyts and S. Ducasse. Software classifications: a uniform way to support flexible IDEs, 2001.
Working Paper.

[WH92] N. Wilde and R. Huitt. Maintenance support for object-oriented programs.IEEE Transactions on
Software Engineering, SE-18(12):1038–1044, December 1992.

[Wuy01] R. Wuyts.A Logic Meta-Programming Approach to Support the Co-Evolution of Object-Oriented
Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.

