
Final Scientific Report
SNF Project no. 200020-105091/1

“A Unified Approach to Composition and Extensibility”

November 6, 2006

a) Summary of results
This project focuses on the design and implementation of programming language mechanisms and concepts
to enable and control extensibility of complex software systems. Significant results have been achieved in
the four areas covered by this project. (i) TRAITS offer a fine-grained mechanism for composing classes
from reusable components. We have developed an approach to incorporate TRAITS into statically-typed
languages like Java and C#. The TRAITS model has been extended to incorporate state, while retaining the
key properties of the stateless TRAITS model. TRAITS have also been included in the current distribution
of Squeak, an open-source Smalltalk system. (ii) CLASSBOXES offer a module system that confines the
visibility of extensions to selected clients. We have prototyped an environment to support the development
of CLASSBOXES from the programmer’s perspective. (iii) DIAMOND concerns foundational work in the
development of programming mechanisms to support software evolution. We have developed a framework
to support high-level behavior reflection, a “back-in-time” debugger capability, and an approach to reason
about aliasing in evolving systems. (iv) EG is a framework for composing unit tests in a rigorous way. We
have elaborated the EG meta-model and developed an experimental environment to support the construction
of tests and units under test according to this meta-model.

Results
We present the results obtained during the period from 2005-10-01 to 2006-09-30 in the four areas covered
by this project: TRAITS, CLASSBOXES, DIAMOND and Composable Tests.

Traits

TRAITS are a mechanism for defining classes in an object-oriented language from fine-grained reusable
components.

The work on TRAITS has considerably matured, by both research extensions and industrial acceptance.
In the original TRAITS model, a TRAIT bundled a collaborating set of methods that can be used to compose
classes while avoiding problems of fragility brought by multiple inheritance and mixin [DNS+06]. In this
model, state can only be accessed via accessor methods that are required by the traits and are implemented
in the classes. We have developed an extension to the model to also consider state in the definition of traits
[BDNW06]. Stateful traits allow for the definition of variables, and unless explicitly stated otherwise by
the designer, the visibility of the variables is restricted to the defining trait. In this way, we also solve the
problem of name clashes.

Most implementations of traits have focused on dynamically-typed languages. That is why we focused
on how to best introduce traits to statically-typed languages. We have conducted a project in partner-
ship with Microsoft to explore and evaluate the problems residing in integrating TRAITS into CSharp 2.0
[Rei05]. We have designed an extension to the CSharp syntax and built a successful preprocessor to ex-
press the TRAITS into regular CSharp 2.0 code. We argued and showed that the flattening property of traits

1



should be used as a guiding principle for any attempt to add traits to statically-typed languages. We demon-
strated how this principle applies to Featherweight-Trait Java, a conservative extension to Featherweight
Java [NDS06].

We have led the work on integrating TRAITS into Squeak, and starting from version 3.9 TRAITS are
part of the core of the language [DD06].

Classboxes

CLASSBOXES offer a module system that supports local rebinding by confining the visibility of extensions
to the scope of a given CLASSBOX. In this way clients of existing classes are protected from potentially
disruptive extensions that need not concern them.

The concept of scoped extensions extended beyond the metaphor used in the current code browsers.
Therefore, we developed an advanced prototype browser for supporting CLASSBOXES [Hal05]. The
browser is based on a generic meta driven browser [BDPW06].

We have performed an in-depth analysis on module diversity and we have built a formalism and a
taxonomy through which different module systems can be compared [BDN05a]. Our goal was to provide
for a common foundation for expressing and comparing different module systems. To validate our ap-
proach, we have expressed the module systems of several languages (e.g. Java packages, C# namespaces,
CLASSBOXES) and summarized the results in a taxonomy.

We have developed Classbox/J, and have also performed an extended experiment on a large Java
case study to show both the scalability of the approach and its applicability on statically typed languages
[BDN05b]

The work on CLASSBOXES conducted by Dr. Alexandre Bergel during his PhD and part of this project
received the prestigious Ernst Denert-Stiftung Prize for Software Engineering 20061.

Diamond

“DIAMOND” refers to our foundational work towards the design of a “programming language in the sky”
to support dynamic software evolution. We have made considerable progress towards understanding the
kinds of mechanisms such a language needs to support.

We have continued the work on runtime bytecode transformation [DDT06]. The ByteSurgeon system
has been used for a number of practical systems (e.g. test coverage analysis). The availability of ByteSur-
geon improves the capabilities of Squeak for prototyping programming languages and tools [BD06]. Using
ByteSurgeon we built a back-in-time debugger, a debugger that addresses the non-locality problem of run-
time errors and their causes: the cause of a runtime error might be out of the scope of the current stack
[HDD06]. The debugger not only stores the state for the current stack, but for the entire execution trace,
and it allows us to navigate the entire execution history to look for the problem [Hof06].

Dynamic, unanticipated adaptation of running systems is of interest in a variety of situations, ranging
from functional upgrades to on-the-fly debugging or monitoring of critical applications. Based on our
work on Bytecode manipulation, we have implemented a framework (Geppetto) that allows these kinds of
change by providing unanticipated partial behavioral reflection for Smalltalk [RDT06]. Geppetto combines
the selectivity and efficiency of partial behavioral reflection with the dynamic nature of ByteSurgeon that
does not require preparation of the code of any sort [Röt06].

One of the primary challenges in building and evolving object-oriented systems is reasoning about
aliasing between objects. During the last ten years, much research has been carried out in the field of
aliasing control (ownership types or confined types to name only two). However, almost all approaches
rely on type annotations and static type systems and therefore (i) cannot be applied to dynamically typed
languages and (ii) put burden on the developer because of complex annotation of source code. Recently we
have started investigating into a generic, run-time based model of alias control [NDGL06].

1www.denert-stiftung.de

2

http://www.denert-stiftung.de/preistraeger/


Composable Tests

In addition to expressing functional requirements that software units should fulfil, tests also provide con-
crete examples of how the code can be used. This idea is at the root of the PhD thesis of Markus Gälli
[G0̈6]. A meta-model called EG is developed in which the examples are linked with the methods under test
and they provide reusable pieces of code and of assumptions.

We have implemented the EG meta-model, and we have built a prototype IDE, called EGBROWSER
[Wam06]. We have carried out an initial empirical study to evaluate the effectiveness of our example-driven
model. The study provides some evidence that the meta-model helps to improve programmer productivity
when developing in a test-driven fashion.

From a different perspective, we have also experimented with writing tests for legacy systems. The
main problem with this is that legacy systems are typically purely understood and modularized, hence
bringing the system into the wanted state is difficult. As a result, we have expressed tests as logic rules
directly on top of collected traces [DGW06].

Staff contributions
• Marcus Denker is in the third year of the PhD. He extended the work on reflection embodied in

BYTESURGEON [DDT06], he initiated a project to build a high level interface for reflection con-
trol [Röt06], and participated in building a back-in-time debugger [HDD06]. He was a key person
responsible for the release of the Squeak 3.9, an open source Smalltalk system [DD06].

• Markus Gälli has completed his PhD on Composable Tests and will defend his thesis in November
2006.

• Adrian Kuhn is in his first year of the PhD. He explored the use of signal processing to analyze traces
[KG06], and worked on a generic visualization to represent software systems [DGK06].

• Adrian Lienhard is in the 2nd year of the PhD. During the past year, he continued the work on
capturing and modeling aliases as first class entities[NDGL06].

Changes to the research plan
No major changes have occurred in the research plan.

Important events
• Adrian Kuhn presented two papers at the International Conference on Software Maintenance (ICSM

2006) [KG06, DGK06].

• Marcus Denker presented papers at International ERCIM Workshop on Software Evolution [DD06],
14th International Smalltalk Conference [Röt06], and NET.ObjectDays 2006 [HDD06].

• Markus Gälli presented two papers at the 4th International Conference on Creating, Connecting and
Collaborating with Computers (C5 2006) [GNS06, TG06].

• Alexandre Bergel has won the Ernst Denert-Stiftung Prize for Software Engineering 2006 for his
PhD thesis on Classboxes.

• Oscar Nierstrasz presented a paper at the Workshop on Revival of Dynamic Languages – co-located
with ECOOP 2006 (RDL 2006) [NDGL06].

• Oscar Nierstrasz was a keynote speaker at NODe 2006 (NET.ObjectDays 2006 – Erfurt, Germany,
Sept. 18-21, 2006), where he gave the presentation “Taming Software Change”, summarizing current
and ongoing research funded by this SNF project and the successor project (SNF 200020-113342,
Analyzing, Capturing and Taming Software Change).

3



• Oscar Nierstrasz was Program Chair of MoDELS 2006 (9th International Conference on Model
Driven Engineering Languages and Systems – Genoa, Italy, Oct 1-6, 2006).

• Oscar Nierstrasz was PC Member of:

– EVOL 2006 (International ERCIM Workshop on Software Evolution – Lilles, France, April
6-7, 2006)

– DLS05 (Dynamic Languages Symposium at OOPSLA 2005 – San Diego, Oct 18, 2005)

– MoDELS / UML 2005 (ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems – Jamaica, Oct 2-7, 2005)

• Stéphane Ducasse was PC Member of:

– IDM 2006 (Journées sur l’Inginérie Dirigée par les Modeèles – Lille, France, 27-28 June, 2006)

– CSMR 2006 (10th European Conference on Software Maintenance and Reengineering – Bari,
Italy, March 22-24, 2006)

– ICPC 2006 (4th IEEE International Conference on Program Comprehension – Athens, Greece,
June 14-16, 2006)

– LMO 2006 (Conférence sur les Languages et Modèles à Objets – Nı̂mes, France, March 22-24,
2006)

– MoDELS 2006 (9th International Conference on Model Driven Engineering Languages and
Systems – Genoa, Italy, Oct 1-6, 2006)

– Organizer of International Workshop on Visualizing Software for Understanding and Analysis
2005 (Vissoft)

– DLS05 (Dynamic Languages Symposium at OOPSLA 2005 – San Diego, Oct 18, 2005)

– International Conference on Software Maintenance (ICSM 2005)

4



b) Publications
Published papers are annexed to this report. They are all available electronically as PDF files at the follow-
ing url:

www.iam.unibe.ch/∼scg/cgi-bin/scgbib.cgi?snf06
Please note that theses and student projects are not included with this report, but are nevertheless

available electronically from the above URL.
Papers published in the context of the RECAST project are also not included with this report. They

have been previously submitted with the intermediate report for RECAST. Electronic versions are available
at:

www.iam.unibe.ch/∼scg/cgi-bin/scgbib.cgi?recast06

Published papers
[BD06] Alexandre Bergel and Marcus Denker. Prototyping languages, related constructs and tools

with Squeak. In Proceedings of the Workshop on Revival of Dynamic Languages (co-located
with ECOOP’06), July 2006.

[BDN05a] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Analyzing module diversity. Jour-
nal of Universal Computer Science, 11(10):1613–1644, November 2005.

[BDN05b] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Controlling the scope
of change in Java. In Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05), pages 177–189, New York, NY, USA, 2005. ACM Press.

[DDT06] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime bytecode transformation for
Smalltalk. Journal of Computer Languages, Systems and Structures, 32(2-3):125–139, July
2006.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Programming Languages
and Systems, 28(2):331–388, March 2006.

[GNS06] Markus Gaelli, Oscar Nierstrasz, and Serge Stinckwich. Idioms for composing games with
EToys. In Proceedings of C5 2006 (The Fourth International Conference on Creating, Con-
necting and Collaborating through Computing), pages 222–321, January 2006.

[HDD06] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and implementation of a
backward-in-time debugger. In Proceedings of NODE’06, volume P-88 of Lecture Notes in
Informatics, pages 17–32. Gesellschaft für Informatik (GI), September 2006.

[KG06] Adrian Kuhn and Orla Greevy. Summarizing traces as signals in time. In Proceedings IEEE
Workshop on Program Comprehension through Dynamic Analysis (PCODA 2006), pages 01–
06, Los Alamitos CA, October 2006. IEEE Computer Society Press.

[NDGL06] Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba, and Adrian Lienhard. Analyzing, capturing
and taming software change. In Proceedings of the Workshop on Revival of Dynamic Lan-
guages (co-located with ECOOP’06), July 2006.

[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening Traits. Journal of
Object Technology, 5(4):129–148, May 2006.

[TG06] Florian Thalmann and Markus Gaelli. Jam Tomorrow: Collaborative music generation in
Croquet using OpenAL. In Proceedings of C5 2006 (The Fourth International Conference on
Creating, Connecting and Collaborating through Computing), pages 73–78, January 2006.

[TGDB06] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel. Context-aware aspects. In
Proceedings of the 5th International Symposium on Software Composition (SC 2006), LNCS
4089, pages 227–242, Vienna, Austria, March 2006.

5

http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi?snf06
http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi?recast06


Theses and Student projects
[G0̈6] Markus Gälli. Modeling Examples to Test and Understand Software. PhD thesis, University of

Berne, November 2006.

[Hal05] Niklaus Haldimann. A sophisticated programming environment to cope with scoped changes.
Informatikprojekt, University of Bern, December 2005.

[Hof06] Christoph Hofer. Implementing a backward-in-time debugger. Master’s thesis, University of
Bern, September 2006.

[Rei05] Stefan Reichhart. A prototype of Traits for C#. Informatikprojekt, University of Bern, 2005.

[Ren06] Lukas Renggli. Magritte – meta-described web application development. Master’s thesis, Uni-
versity of Bern, June 2006.

[Röt06] David Röthlisberger. Geppetto: Enhancing Smalltalk’s reflective capabilities with unanticipated
reflection. Master’s thesis, University of Bern, January 2006.

[Wam06] Rafael Wampfler. Eg – a meta model and editor for unit tests. Master’s thesis, University of
Bern, November 2006.

Selected RECAST publications
[DD06] Marcus Denker and Stéphane Ducasse. Software evolution from the field: an experience report

from the Squeak maintainers. In ERCIM workshop on Software Evolution, 2006.

[DGK06] Stéphane Ducasse, Tudor Gı̂rba, and Adrian Kuhn. Distribution map. In Proceedings Interna-
tional Conference on Software Maintainance (ICSM 2006), pages 203–212, Los Alamitos CA,
2006. IEEE Computer Society.

[DGW06] Stéphane Ducasse, Tudor Gı̂rba, and Roel Wuyts. Object-oriented legacy system trace-based
logic testing. In Proceedings 10th European Conference on Software Maintenance and Reengi-
neering (CSMR 2006), pages 35–44. IEEE Computer Society Press, 2006.

[KG06] Adrian Kuhn and Orla Greevy. Exploiting the analogy between traces and signal processing.
In Proceedings IEEE International Confernce on Software Maintainance (ICSM 2006), Los
Alamitos CA, September 2006. IEEE Computer Society Press.

6



c) Publications in press

Publications to appear
[BDNW06] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful traits. In

Proceedings of the International Smalltalk Conference, LNCS. Springer, 2006. To appear.

[BDPW06] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts. Meta-driven browsers.
In Proceedings of the International Smalltalk Conference (ISC 2006), LNCS. Springer, 2006.
To appear.

[RDT06] David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated partial behavioral re-
flection. In Proceedings of ISC 2006 (International Smalltalk Conference), LNCS, 2006. To
appear.

7


