VISUALLY MINING SCIENTIFIC COMMUNITIES

BSc project by Silas Berger, supervised by Leonel Merino E-Mail: silas.berger@students.unibe.ch

What problem we want to solve

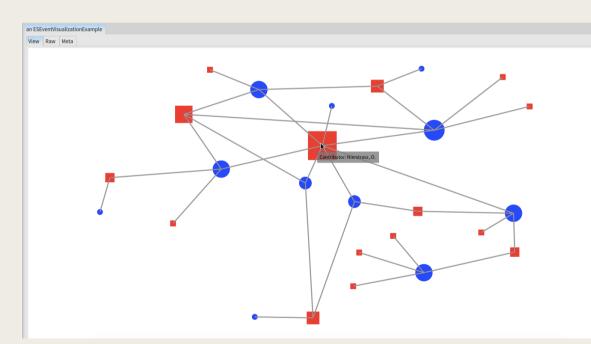
- Valuable information is hidden in amounts of papers too large for humans to read
- Visualizations augments human understanding of data

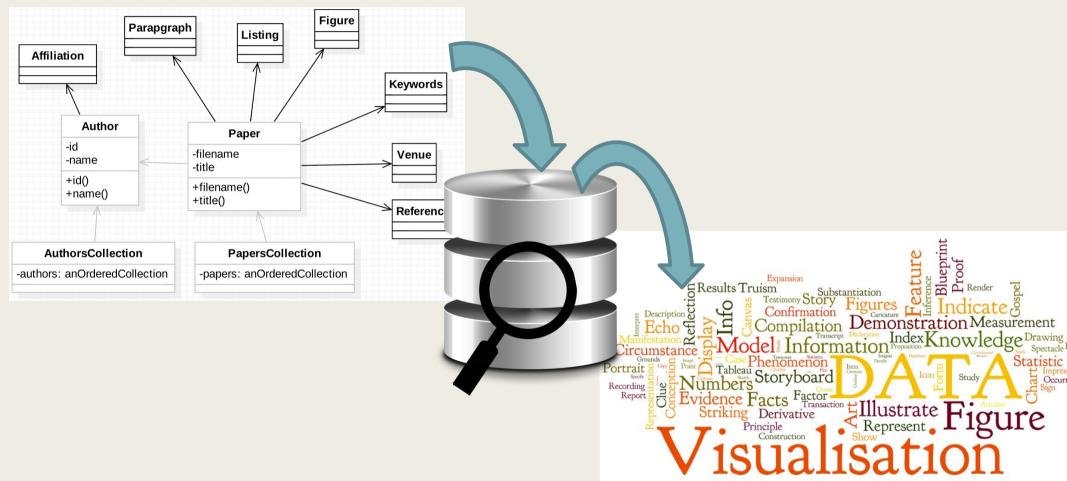
Marea: a Semi-automatic Decision Support System for Breaking Dependency Cycles

Andrea Caracciolo SCG, University of Bern 3012 Bern, Switzerland http://scg.unibe.ch Bledar Aga Swiss Aviation Software 4002 Basel, Switzerland http://www.swiss-as.com

Mircea Lungu Oscar Nierstrasz University of Groningen 9747 Groningen, The Netherlands m.f.lungu@rug.nl http://scg.unibe.ch

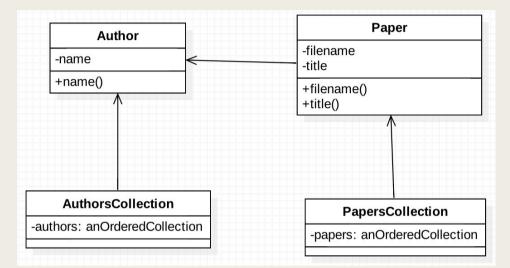
Abstract—Dependency cycles are commonly recognized as one of the most critical quality anti-patterns. Cycles compromise the modularity of a system, prevent proper reuse and increase the cost of maintenance and testing. Many tools are capable of detecting and visualizing package cycles existing within software projects. Unfortunately, detecting cycles is only half of the work. Once detected, cycles need to be removed and this typically results in a complex process that is only partially supported by current tools. We propose a tool that offers an intelligent guidance mechanism to support developers in removing package cycles. Our tool, Marea, simulates different refactoring strategies and suggests the most cost-effective sequence of refactoring operations that will break the cycle. The optimal refactoring strategy is appreciated by developers [9], [10]. Based on other crowthin practitioners, we found that developers are briefly order to undergo multiple stages in order to eliminate a cycle. Refactoring actions are repeatedly interleaved with reverse engineering steps, during which the user checks the impact of the applied modification. This can lead to a highly ineffective non-linear process that contributes to frustration and higher maintenance costs.


Some tools (e.g., Pasta [11]) have tried to cope with this limitation by introducing support for simulating basic refactoring operations over a reverse engineered model of the analyzed project. Users can drag and drop code elements (*i.e.*, element models) from one container (*i.e.*, package, close) to


What we are building on (EggShell)

- Can import PDFs as XML extract title and contributors and model retrieved data
- First visualization exists,
 but focus is on data
 extraction and (visual)
 assessment of precision

model := EggShell modelPapersInFolder: 'examplePapersInFolder: 'examplePa



Current work

- Query language (OCL-like approach)
- Data model expansion
- Work out sample queries to assess quality of data model and query language

ExtendedEggShell venue: #VISSOFT lookFor: #Pharo during: (2000 to: 2006).
(ExtendedEggShell papers select: [:paper paper authors includes: 'L. Merino']) flatCollect: [:paper paper authors].
(ExtendedEggShell venue: #VISSOFT allAuthors) collect: [:author author affiliation] sortByOccurrences: #DESC.
(ExtendedEggShell papers) lookFor: ('Roassal' 'communities' 'agile') collect: [:paper paper title].

VISUALLY MINING SCIENTIFIC COMMUNITIES

- Based on EggShell
- Adapting the data model of scientific communities
- Language for querying the model
- Visualization of results that encourage exploration