
Verifying Concurrency 
Runtimes using Graph 

Transformation Systems
Claudio Corrodi1, Chris Poskitt2, Alexander Heußner3

1Software Composition Group, University of Bern, Switzerland

2Singapore University of Technology and Design, Singapore

3Software Technologies Research Group, University of Bamberg, Germany



Chair of
Software Engineering

http://se.inf.ethz.ch/


Chair of
Software Engineering

Software Technologies Research Group 

http://se.inf.ethz.ch/


Chair of
Software Engineering

Concurrency Made Easy
O-O Concurrency models

Verification Testing

Robotics

http://se.inf.ethz.ch/


Chair of
Software Engineering

Concurrency Made Easy
O-O Concurrency models

Verification Testing

Robotics

http://se.inf.ethz.ch/


SCOOP
Simple Concurrent Object-Oriented Programming

Goal: Raise concurrency abstractions from error-
prone (lock based) models to O-O programming



SCOOP



SCOOP

eat (left, right: separate FORK)
do

left.pick_up
right.pick_up
print (“I am eating!”)
left.put_down
right.put_down

end

Separate block: No intervening calls 
between “pick_up” and “put_down”



Execution Models

“Request Queues”

Separate block guarantees?

Performant?
P2, P3

FORK

P1



Execution Models

“Request Queues”

Separate block guarantees?

Performant?

✔
✖

P2, P3

FORK

P1



Execution Models

“Queues of Queues”

Separate block guarantees?

Performant?

“Request Queues”

Separate block guarantees?

Performant?

✔
✖

P2, P3

FORK

P1

P2

FORK

P1 P3



Execution Models

“Request Queues”

Separate block guarantees?

Performant?

✔
✖

✔
✔

P2, P3

FORK

P1

P2

FORK

P1

“Queues of Queues”

Separate block guarantees?

Performant?
P3



Execution Models

“Distributed SCOOP”

Extension of “Queues of Queues” model



Correctness

No race conditions?

Absence of deadlocks?



Correctness

No race conditions?

Is this still a solution?

eat (left, right: separate FORK)
do

print (“I am eating!”)
end

Absence of deadlocks?



Our work

Can we model and simulate—modularly—
competing semantics for a language like SCOOP,
and analyse them for semantic discrepancies?



Approach

• Model runtimes as graph transformation 
systems

• Modular / paramterisable semantics

• Analyse parameterised GTS against 
representative programs in GROOVE



Graph Transformation Systems
Configuration / state graph



Graph Transformation Systems
Configuration / state graph

Transformation rule



Graph Transformation Systems
Configuration / state graph

Transformation rule



Graph Transformation Systems
Configuration / state graph

Transformation rule



Graph Transformation Systems

State-space exploration

Nondeterministic application of 
any matching rule

(labeled transition system)



SCOOP GTS

(show DP cfg here)



SCOOP GTS

(show DP cfg here)



SCOOP GTS



Detecting errors





Publications



Publications



Publications



Acknowledgments
• Many slides are adapted from related similar presentations given by 

Chris Poskitt and Alexander Heußner

• Dining philosophers image taken from Wikipedia

• D-SCOOP figure taken from “An Interference-Free Programming 
Model for Network Objects” (Schill, Poskitt, Meyer; 2016)


