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SCOOP
Simple Concurrent Object-Oriented Programming

Goal: Raise concurrency abstractions from error-
prone (lock based) models to O-O programming



SCOOP



SCOOP

eat (left, right: separate FORK)
do

left.pick_up
right.pick_up
print (“I am eating!”)
left.put_down
right.put_down

end

Separate block: No intervening calls 
between “pick_up” and “put_down”
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Execution Models

“Distributed SCOOP”

Extension of “Queues of Queues” model



Correctness

No race conditions?

Absence of deadlocks?



Correctness

No race conditions?

Is this still a solution?

eat (left, right: separate FORK)
do

print (“I am eating!”)
end

Absence of deadlocks?



Our work

Can we model and simulate—modularly—
competing semantics for a language like SCOOP,
and analyse them for semantic discrepancies?



Approach

• Model runtimes as graph transformation 
systems

• Modular / paramterisable semantics

• Analyse parameterised GTS against 
representative programs in GROOVE
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Graph Transformation Systems

State-space exploration

Nondeterministic application of 
any matching rule

(labeled transition system)



SCOOP GTS

(show DP cfg here)



SCOOP GTS

(show DP cfg here)



SCOOP GTS



Detecting errors
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