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Recap: Structured vs. semi-structured data
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<library> 
  <item>   (a book)
    <id>1</id> 
    <title>The C Programming Language</title> 
    <author>Brian W. Kernighan</author> 
    <author>Dennis M. Ritchie</author> 
    <year>1978</year> 
  </item> 
  <item>    (an article)
    <id>2</id> 
    <title>Inferring NoSQL schema</title> 
    <author>John Doe</author>  
    <journal>VLDB</journal> 
    <year>2016</year> 
    <vol>1</vol> 
  </item> 
  <item>    (a thesis)
    <id>3</id> 
    <title>Hacking Evil Corp</title> 
    <author>Elliot Alderson</author>  
    <date>09.05.2015</date> 
    <institution>fsociety</institution> 
  </item> 
</library>  

lib 
id title journal year vol date inst 
1 The C Programming Language NULL  1978 NULL NULL NULL 
2 Inferring NoSQL schema VLDB 2016 1 NULL NULL 
3 Hacking Evil Corp NULL NULL NULL 09.05.2015 fsociety 

auth 
id name 
1 Brian W. Kernighan 
2 Dennis M. Ritchie 
3 John Doe 
4 Elliot Anderson 

ref 
lib_id auth_id 
1 1 
1 2 
2 3 
3 4 



What we would like
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book 
id title year 
1 The C Programming Language 1978 
10 Harry Potter 1997 
11 Random book 2000 

article 
id title author journal year vol 
2 Inferring NoSQL schema John Doe Inferring NoSQL schema 2016 1 
20 Are You Living In a Computer Simulation? Nick Bostrom Philosophical Quarterly 2003 53 
21 Random article Random woman Random journal 2010 20 

thesis 
id title author date institution 
3 Hacking Evil Corp Elliot Alderson 09.05.2015 fsociety 
30 Random thesis Random student 01.01.2010 Oxford University 
31 Other random thesis Random man 02.02.2012 Bern University 

BUT: we do not know what an item is (book, article, thesis, or something else)!

no NULLs!



Recap: Formal Concept Analysis
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  __id auth titl year jrnl volm date inst 
The C Programming Language X X X X         
Inferring NoSQL schema X X X X X X     
Hacking Evil Corp X X X       X X 
Harry Potter X X X X         
Random book X X X X         
Are You Living In a Computer Simulation? X X X X X X     
Random article X X X X X X     
Random thesis X X X       X X 
Other random thesis X X X       X X 

attributes

ob
je

ct
s

>  Context := (G,M,I) where G = objects, M = attributes, I = binary relation between G, M
>  Concept := (A,B), A⊆G, B⊆M, all As have all attributes in B; these are found in all As

cf. Ganter, Wille: Formal Concept Analysis, p. 18f.

book
article
thesis

concepts:



Recap: The concept lattice
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Own visualisation

Attribute name in node: This 
attribute appears only in this 
node and all its children

Percentages in brackets 
denote the type majority

Ext denotes all descendants
Own denotes own objects

Two peripheries: Has own 
objects (objects whose 
attribute composition is equal 
to the node’s intent)

(This means that there are no 
objects with only an author 
and a title, and no objects 
with all mentioned attributes)



Goals
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>  We want to tranform a semi-structured dataset to a set of relational database 
tables. We want to optimize this process with regard to two aspects.
—  We want our tables to "wrap around" the data "tightly" (more formal definition given 

later)
—  Objects of the same type should end up in the same table



Motivational quote
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"Rechnen Sie damit, frustriert zu 
werden" ("Expect to be frustrated")
–Bernhard Ganter when we told him what we were trying to do
Bern, 10.2.2017



Algorithm
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>  Iteratively execute the following:
>  Calculate the highest merge score between any two adjacent lattice nodes that 

both have own objects
>  The merge score is defined as ([#objects in bigger node] / [#objects in smaller 

node]^2)
—  Merge node with 1 object into node with 2 objects: score = 2
—  Merge node with 10 objects into node with 20 objects: score = 0.2
—  Like this, outliers are merged first; nodes close to the archetype last

>  Set the intent of the objects in the node with fewer objects to the intent of the 
objects in the node with more objects (merge the nodes)

>  Recompute the lattice. Stop either when there are no such adjacent lattice node 
pairs, or the highest merge score is under a defined threshold



Example (continued)
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Example context, own visualisation



Example (continued)
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Example context, own visualisation



Example (continued)
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Example context, own visualisation



Visualising the transformation: We go from this…
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Auth. Title Pages Year Journ. ISSN Vol. Publ. ISBN Abstr. Bookt.

Book1 X X X X X

Book2 X X X X X X

Book 3 X X X X X X

Book 4 X X X X X X X

Article 1 X X X X X X X

Article 2 X X X X X X X

Article 3 X X X X X X X

Article 4 X X X X X X X X

Article 5 X X X X X X X X

Article 6 X X X X X X X X X
NB: the crosses are 
actually values



… to this
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Auth. Title Pages Year Journ. ISSN Vol. Legacy

Article 1 name 11 title 11 123 2011 journal 1 1234 1

Article 2 name 12 title 12 234 2012 journal 2 2345 2

Article 3 name 13 title 13 345 2013 journal 3 3456 3

Article 4 name 14 title 14 12 2014 journal 4 4567 4 Publisher: Publisher 14

Article 5 name 15 title 15 23 2015 journal 5 5678 5 Abstract: Abstract 15

Article 6 name 16 title 16 34 2016 journal 6 6789 6 Publisher: Publisher 16  
Abstract: Abstract 16

Auth. Title Pages Year Publisher ISBN Legacy

Book 1 name 1 title 1 1230 2001 NULL 12340

Book 2 name 2 title 2 2340 2002 Publisher 2 23450

Book 3 name 3 title 3 3450 2003 Publisher 3 34560

Book 4 name 4 title 4 1200 2004 Publisher 4 45670 Booktitle: Booktitle 4

5 of 70 values are 
legacy values

1 of 66 (6x4 + 7x6) cells 
is NULL



Measuring success
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>  5 of 70 values are legacy values: Legacy Score = 5/70 = 7.143%
>  1 of 66 post-transformation cells is NULL: Null Score = 1/66 = 1.515%
>  "Wrapping" tables "tightly" around the data = have low legacy, null scores

>  Major Score: Percentage of objects belonging to nodes with a majority of 
objects of their type

>  Clean Score: Percentage of objects belonging to nodes with only one object 
type

>  In this (constructed) example, major = clean = 100%



Results
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>  We tested a few variations of the algorithm, e.g. forbidding certain merges
—  None of them works best on all datasets
—  There might not be a heuristics-based optimal approach to this problem

>  For a few datasets, our algorithm produces the optimal result
—  clean = major = 100%, small legacy and null values

>  Generally good results on datasets that were already quite regular
>  However, results for large and diverse datasets are indeed frustrating
>  In practice, a domain expert would be consulted

— One of the cornerstones of Formal Concept Analysis
—  This means that we can deal with a certain type of dirty data
—  Namely outliers. These can easily be spotted and presented to the expert



Results: A good example
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12 merge steps; major = 99.6%, clean = 92%, null = 2.804%, legacy = 0.953%
A domain expert will be able to make this result almost optimal



Results: A bad example
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41 merge steps; major = 82%, clean = 35%, null = 2.5%, legacy = 16.2%
Also, there are 25 nodes left, but we only have 9 different types in the data!



Future Work
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>  Our method is promising, yet far from mature
>  It has two major weaknesses:

—  Locality: For every step of the merge process, only adjacent nodes are 
considered. However, there may be important patterns in the data that cannot 
be mapped to adjacent concept lattice nodes.

—  Rigidity: The algorithm is highly sensitive to small changes in the data, e.g. a 
single object with a certain intent can make nodes adjacent that otherweise 
wouldn’t be

>  We could mine implications or use Fuzzy Formal Concept Analysis
—  Implications are all order relations in the lattice, not just of neighbouring nodes
—  In Fuzzy FCA, the relation between objects and attributes is not binary



Future Work
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>  There are many parameters that can be tweaked:
—  Computation of concept (dis)similarity

–  Similar to graph edit distance
–  much more nuances possible than used here

—  Merge score threshold
>  Special break conditions

—  e.g. no merging if the difference in attributes is more than 2
>  Instead of simple heuristics, use machine learning

—  Have an algorithm learn different parameters from a training set
—  Learn which parameters are important for which kind of dataset



Questions?
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