D UNIVERSITÄT BERN

b

Inferring schemata from semi-structured data with Formal Concept Analysis

Bachelor thesis Luca Liechti Software Composition Group Universität Bern 27.6.2017

Roadmap

b

- > Recap: Structured vs. semi-structured data
- > Recap: Formal Concept Analysis
- > Recap: The concept lattice
- > Goals
- > A motivational quote
- > Algorithm
- > Results
- > Future work
- > Literature

Recap: Structured vs. semi-structured data

b

IJ,

<library>

<item></item>	(a book)
<id>1</id>	
<title>The C Pro</title>	gramming Language
<author>Brian W.</author>	Kernighan
<author>Dennis M</author>	. Ritchie
<year>1978<td>></td></year>	>
<item></item>	(an article)
<id>2</id>	
<title>Inferring</title>	NoSQL schema
<author>John Doe</author>	
<journal>VLDB<td>ournal></td></journal>	ournal>
<year>2016<td>></td></year>	>
<vol>1</vol>	
<item></item>	(a thesis)
<id>3</id>	
<title>Hacking E</title>	vil Corp
<author>Elliot A</author>	lderson
<date>09.05.2015</date>	
<institution>fso</institution>	ciety

</library>

title	journal	year	vol	date	inst
The C Programming Language	NULL	1978	NULL	NULL	NULL
Inferring NoSQL schema	VLDB	2016	1	NULL	NULL
Hacking Evil Corp	NULL	NULL	NULL	09.05.2015	fsociety

auth

lib id

1 2

3

id	name
1	Brian W. Kernighan
2	Dennis M. Ritchie
3	John Doe
4	Elliot Anderson

<u>ref</u>	
lib_id	auth_id
1	1
1	2
2	3
3	4

	journal	year	vol	date
9	NULL	1978	NULL	NULL

What we would like

b

U

<u>book</u>

id	title	year
1	The C Programming Language	1978
10	Harry Potter	1997
11	Random book	2000

<u>article</u>

id	title	author	journal	year	vol
2	Inferring NoSQL schema	John Doe	Inferring NoSQL schema	2016	1
20	Are You Living In a Computer Simulation?	Nick Bostrom	Philosophical Quarterly	2003	53
21	Random article	Random woman	Random journal	2010	20

<u>thesis</u>

id	title	author	date	institution
3	Hacking Evil Corp	Elliot Alderson	09.05.2015	fsociety
30	Random thesis	Random student	01.01.2010	Oxford University
31	Other random thesis	Random man	02.02.2012	Bern University

no NULLs!

BUT: we do not know what an item is (book, article, thesis, or something else)!

Recap: Formal Concept Analysis

UNIVERSITÄT BERN

Context := (G,M,I) where G = objects, M = attributes, I = binary relation between G, M

> Concept := (A,B), $A \subseteq G$, $B \subseteq M$, all As have all attributes in B; these are found in all As

cf. Ganter, Wille: Formal Concept Analysis, p. 18f.

Recap: The concept lattice

Attribute name in node: This attribute appears only in this node and all its children

Percentages in brackets denote the type majority

Ext denotes all descendants Own denotes own objects

Two peripheries: Has own objects (objects whose attribute composition is equal to the node's intent)

(This means that there are no objects with only an author and a title, and no objects with all mentioned attributes)

Own visualisation

- > We want to tranform a semi-structured dataset to a set of relational database tables. We want to optimize this process with regard to two aspects.
 - We want our tables to "wrap around" the data "tightly" (more formal definition given later)
 - Objects of the same type should end up in the same table

Motivational quote

"Rechnen Sie damit, frustriert zu werden" ("Expect to be frustrated")

–Bernhard Ganter when we told him what we were trying to do Bern, 10.2.2017

Algorithm

- Iteratively execute the following:
- > Calculate the highest merge score between any two adjacent lattice nodes that both have own objects
- The merge score is defined as ([#objects in bigger node] / [#objects in smaller node]^2)
 - Merge node with 1 object into node with 2 objects: score = 2
 - Merge node with 10 objects into node with 20 objects: score = 0.2
 - Like this, outliers are merged first; nodes close to the archetype last
- Set the intent of the objects in the node with fewer objects to the intent of the objects in the node with more objects (merge the nodes)
- > Recompute the lattice. Stop either when there are no such adjacent lattice node pairs, or the highest merge score is under a defined threshold

Example (continued)

b UNIVERSITÄT BERN

h

Example context, own visualisation

Example (continued)

^b UNIVERSITÄT BERN

b

Example context, own visualisation

Example (continued)

b UNIVERSITÄT BERN

b

Example context, own visualisation

Visualising the transformation: We go from this...

	Auth.	Title	Pages	Year	Journ.	ISSN	Vol.	Publ.	ISBN	Abstr.	Bookt.
Book1	Х	Х	Х	Х					Х		
Book2	Х	Х	Х	Х				Х	Х		
Book 3	Х	Х	Х	Х				Х	Х		
Book 4	Х	Х	Х	Х				Х	Х		Х
Article 1	Х	Х	Х	Х	Х	Х	Х				
Article 2	Х	Х	Х	Х	Х	Х	Х				
Article 3	Х	Х	Х	Х	Х	Х	Х				
Article 4	Х	Х	Х	Х	Х	Х	Х	Х			
Article 5	Х	Х	Х	Х	Х	Х	Х			Х	
Article 6	Х	Х	Х	Х	Х	Х	Х	Х		Х	

NB: the crosses are actually values

b

UNIVERSITÄT BERN

U

... to this

Auth. Title Pages Year Publisher ISBN Legacy 5 of 70 values are NULL Book 1 title 1 1230 2001 12340 name 1 legacy values Book 2 name 2 title 2 2340 2002 Publisher 2 23450 1 of 66 (6x4 + 7x6) cells Book 3 Publisher 3 name 3 title 3 3450 2003 34560 is NULL Book 4 name 4 title 4 1200 2004 Publisher 4 45670 Booktitle: Booktitle 4

	Auth.	Title	Pages	Year	Journ.	ISSN	Vol.	Legacy
Article 1	name 11	title 11	123	2011	journal 1	1234	1	
Article 2	name 12	title 12	234	2012	journal 2	2345	2	
Article 3	name 13	title 13	345	2013	journal 3	3456	3	
Article 4	name 14	title 14	12	2014	journal 4	4567	4	Publisher: Publisher 14
Article 5	name 15	title 15	23	2015	journal 5	5678	5	Abstract: Abstract 15
Article 6	name 16	title 16	34	2016	journal 6	6789	6	Publisher: Publisher 16 Abstract: Abstract 16

Measuring success

- > 5 of 70 values are legacy values: **Legacy Score** = 5/70 = 7.143%
- > 1 of 66 post-transformation cells is NULL: **Null Score** = 1/66 = 1.515%
- > "Wrapping" tables "tightly" around the data = have low legacy, null scores
- Major Score: Percentage of objects belonging to nodes with a majority of objects of their type
- Clean Score: Percentage of objects belonging to nodes with only one object type
- > In this (constructed) example, major = clean = 100%

- > We tested a few variations of the algorithm, e.g. forbidding certain merges
 - None of them works best on all datasets
 - There might not be a heuristics-based optimal approach to this problem
- > For a few datasets, our algorithm produces the optimal result

- clean = major = 100%, small legacy and null values

- > Generally good results on datasets that were already quite regular
- > However, results for large and diverse datasets are indeed frustrating
- > In practice, a **domain expert** would be consulted
 - One of the cornerstones of Formal Concept Analysis
 - This means that we can deal with a certain type of dirty data
 - Namely outliers. These can easily be spotted and presented to the expert

Results: A good example

12 merge steps; major = 99.6%, clean = 92%, null = 2.804%, legacy = 0.953% A domain expert will be able to make this result almost optimal

Results: A bad example

41 merge steps; major = 82%, clean = 35%, null = 2.5%, legacy = 16.2% Also, there are 25 nodes left, but we only have 9 different types in the data!

Future Work

- > Our method is promising, yet far from mature
- > It has two major weaknesses:
 - Locality: For every step of the merge process, only adjacent nodes are considered. However, there may be important patterns in the data that cannot be mapped to adjacent concept lattice nodes.
 - Rigidity: The algorithm is highly sensitive to small changes in the data, e.g. a single object with a certain intent can make nodes adjacent that otherweise wouldn't be
- > We could mine implications or use Fuzzy Formal Concept Analysis
 - Implications are all order relations in the lattice, not just of neighbouring nodes
 - In Fuzzy FCA, the relation between objects and attributes is not binary

Future Work

^b UNIVERSITÄT BERN

- > There are many parameters that can be tweaked:
 - Computation of concept (dis)similarity
 - Similar to graph edit distance
 - much more nuances possible than used here
 - Merge score threshold
- > Special break conditions
 - e.g. no merging if the difference in attributes is more than 2
- Instead of simple heuristics, use machine learning
 - Have an algorithm learn different parameters from a training set
 - Learn which parameters are important for which kind of dataset

Questions?

b

Literature

- Santer, Bernhard and Rudolf Wille: Formal Concept Analysis. Mathematical Foundations. Berlin and Heidelberg 1999 [1996]
- Lindig, Christian: Mining Patterns and Violations Using Concept Analysis. In: Bird, Thomas, Tim Menzies, and Thomas Zimmermann: The Art and Science of Analyzing Software Data. Waltham MA 2015, pp. 17-38