

Sandboxing an Android application through
system call interposition

Contents

● Ransomware
● Sandboxing
● Android security model
● Trace an application
● One particular approach

Ransomware

● Malicious piece of software that extorts a payment
● Blocks access to the user’s data and blackmails the

user to pay a ransom
● Encrypting and non-encrypting variants of

ransomware
● Ransomware on mobile phones is not particularly

new (research papers from 2015 and earlier)
● The research field in cryptovirology is far broader
● Attacks are no longer theory but have been carried

out in practice (and caused real damage)

Sandbox

● Isolate a process from the host machine
● Run unverified or untrusted application without

risking harm to the operating system
● Provide a restricted operating system

environment
● Various moulding of sandboxes
● Restrict access to system calls
● Rule based access control

Sandbox

● Usable for legitimate software that runs in a risky environment
(DNS server, browser)

● Record and analyse the tasks of the unknown application
● Monitoring the activities may yield insights into the unknown

application

● When is a set of operations considered legitimate / suspicious /
disruptive / ... ?

● Endless possibilities to
– deceive user
– cloak intents
– ...

● Unique user ID for each
application

● Interactions only through
interprocess communication

● Group assignment based on the
permissions declared in the
manifest file

Privilege separation

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE"/>

10030
u0_a30

10071
u0_a71

10096
u0_a96

10034
u0_a34

10056
u0_a56

10052
u0_a52

Zygote

● Eukaryotic cell formed by a fertilization event between two gametes
● In Android: System service that is the parent of all Android application

processes
Comparable to init

● User starts new application
● Process class calls the Zygote process
● Zygote creates a copy of itself using fork()
● Zygote returns a new process ID
● The Process class starts the new process through its run() method
● The run() method calls startViaZygote()
● Newly spawned process triggers the loading of the Dalvik virtual machine
● Now there are two Dalvik virtual machines

Trace an application
Root the device

● Modify the kernel and all bets are off
● You do not want do demand the users to root

their device
– Technical knowledge required
– Easily rip open security holes
– Sometimes voids the warranty of the device

Trace an application
Share the user ID

● Run in the same user context
● Only possible if the applications

– are signed with the same developer certificate
– explicitly specify a common value for the shared

UID in their manifest file

Trace an application
Use system call interposition

● The magic of peeking into another program
● Control the execution flow of the traced application

long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);
● Abbreviation of "process trace"
● One process can control another
● Controller can inspect and manipulate the internal state of its target

– Used by debuggers and other code-analysis tools
● Here: Usage as a sandbox, run-time environment simulator

● Powerful ability → Attaching is limited to processes that the owner can send signals to (typically only their
own processes)
– CAP_SYS_PTRACE capability limitation
– YAMA Linux Security Module
– FreeBSD: jails and Mandatory Access Control policies.

● Higher level usage of ptrace: Userspace utility strace
● Projects move on extending strace instead of ptrace

Approximately 60 ptrace tags

Some interesting ptrace
arguments

● PTRACE_TRACEME
– Program is conveying its readiness to

get traced
● WIFSTOPPED

– Status variable contains a bit pattern
which indicates the fact that the child
process has stopped

● PTRACE_CONT
– Restart the child by invoking ptrace

with the request
● PTRACE_GETREGS

– Request results in the values of the
CPU registers used by the stopped
child

● PTRACE_SETREGS
– Change the value of the registers

● PTRACE_PEEKDATA
– Of the process being traced examine the

content localised at the given address
● PTRACE_POKEDATA

– Alter the contents of a memory location
● PTRACE_SINGLESTEP

– Restart the stopped process, let it execute
a single instruction and then stop it again

● PTRACE_ATTACH
– Attach to the process specified by its

process ID, making it a tracee of the
calling process

● PTRACE_SYSCALL
– Restart the child process (just like
PTRACE_CONT) but arrange for it to stop
at the next entry to or exit from a system
call

Particular approach

● Load and execute the code of the original application in the context of
the monitoring application

● Start the application we want to sandbox
● Generate a stub application, that loads the code and monitors its

execution through system call interposition
● Patch the parameters of some system calls for e.g. file operations

● Limitations:
Any ptrace-based sandbox limited to register filtering
No filtering for arguments pointing to memory, e.g. file name provided to the
open() system call
Seccomp (secure computing mode) unable to examine memory

Monitor Orig

Stub

Follow-up techniques

● Superseded by access control security policies
● Enforce separation guarantees between applications

● First permissive release of Android 4.3 Jelly Bean
(2012)

● Selective root daemon confinement, enforcement on a
limited set of crucial domains (installd, netd, vold
and zygote) in Android 4.4 KitKat (2013)

● Full confinement, Android Trusted Computing Base
protection as well as full enforcement mode in Android
5.0 Lollipop (2014) and higher

Image sources
● Openclipart, licensed under the Creative Commons Zero 1.0 Public Domain License

URL: http://creativecommons.org/publicdomain/zero/1.0/
Original file: https://openclipart.org/detail/268848/android-thief

● Wikimedia Commons, licensed as public domain.
Original file: https://commons.wikimedia.org/wiki/File:2017_Petya_cyberattack_screenshot.jpg

● Wikimedia Commons, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
URL: https://creativecommons.org/licenses/by-sa/3.0/deed.en

Original file: https://commons.wikimedia.org/wiki/File:Android_dance.svg

● Wikimedia Commons, licensed under the Creative Commons Attribution 3.0 Unported license.
URL: https://creativecommons.org/licenses/by/3.0/deed.en
Original file: https://commons.wikimedia.org/wiki/File:Android_robot.svg

● Wikimedia Commons, licensed as public domain.
Original file: https://commons.wikimedia.org/wiki/File:DIN_4844-2_D-P006.svg

● Wikimedia Commons, licensed under the Expat / MIT License.
URL: https://opensource.org/licenses/mit-license.php
Original File: https://en.wikipedia.org/wiki/File:Xmatrix.png

