Benchmarking Android
Security Analysis

A Bachelors Project,
Intermediate Presentation

by Timo Spring
Supervised by Claudio Corrodi

1. Project Motivation
What Is It About?

Problem

Millions of android apps
Hundreds of Analyses tools

Large scale taxonomies
classitying them

Lack of comparison in
practice

Project Idea

Run selected tools on
common dataset

Evaluate the results and
compare them

Draw conclusions why they
might be different

2. Tool Selection Process
Literature: Reviewing Types Of Vulnerabillities

SCAM 2017

Security Smells in Android

Mohammad Ghafari, Pascal Gadient, Oscar Nierstrasz
Software Composition Group, University of Bern
Bern, Switzerland
{ghafari, gadient, oscar}@inf.unibe.ch

Abstract—The ubiquity of smartphones, and their very broad
capabilities and usage, make the security of these devices tremen-
dously important. Unfortunately, despite all progress in security
and privacy mechanisms, vulnerabilities continue to proliferate.

Research has shown that many vulnerabilities are due to
insecure programming practices. However, each study has often
dealt with a specific issue, making the results less actionable for
practitioners.

To promote secure programming practices, we have reviewed
related research, and identified avoidable vulnerabilities in
Android-run devices and the security code smells that indicate
their presence. In particular, we explain the vulnerabilities,
their corresponding smells, and we discuss how they could
be eliminated or mitigated during development. Moreover, we
develop a lightweight static analysis tool and discuss the extent
to which it successfully detects several vulnerabilities in about
46000 apps hosted by the official Android market.

I. INTRODUCTION

Given these premises, the primary goal of this work is to
shed light on the root causes of programming choices that
compromise users’ security. In contrast to previous research
that has often dealt with a specific issue, we study this phe-
nomenon from a broad perspective. We introduce the notion
of security code smells i.e., symptoms in the code that signal
the prospect of a security vulnerability. We have identified
avoidable vulnerabilities, their corresponding smells in the
code; and discuss how they could be eliminated or mitigated
during development. We have also developed a lightweight
static analysis tool to look for several of the identified security
smells in 46000 apps. In particular, we answer the following
three research questions:

o RQ;: What are the security code smells in Android apps?
We have reviewed major related work, especially those

2. Tool Selection Process

Literature: Reviewing Benchmarking Process

SCAM 2017

Security Smells in

Mohammad Ghafari, Pascal Gadient, C

Software Composition Group, Univer;
Bern, Switzerland

{ghafari, gadient, oscar}@inf.ur

Abstract—The ubiquity of smartphones, and their very broad
capabilities and usage, make the security of these devices tremen-
dously important. Unfortunately, despite all progress in security
and privacy mechanisms, vulnerabilities continue to proliferate.

Research has shown that many vulnerabilities are due to
insecure programming practices. However, each study has often
dealt with a specific issue, making the results less actionable for
practitioners.

To promote secure programming practices, we have reviewed
related research, and identified avoidable vulnerabilities in
Android-run devices and the security code smells that indicate
their presence. In particular, we explain the vulnerabilities,
their corresponding smells, and we discuss how they could
be eliminated or mitigated during development. Moreover, we
develop a lightweight static analysis tool and discuss the extent
to which it successfully detects several vulnerabilities in about
46000 apps hosted by the official Android market.

I. INTRODUCTION

Given thi
shed light |
compromis¢
that has oft
nomenon fr
of security |
the prospec
avoidable v
code; and d
during deve
static analy:
smells in 4(
three resear

. RQll Y
We ha

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

MUBench: A Benchmark for API-Misuse Detectors

Sven Amann' Sarah Nadi'

Technische Universitat Darmstadt’ lowa State University* Lancaster University®
{amann, nadi, mezini}@cs.tu-darmstadt.de, {hoan, tien}@iastate.edu

ABSTRACT

Over the last few years, researchers proposed a multitude
of automated bug-detection approaches that mine a class of
bugs that we call API misuses. Evaluations on a variety
of software products show both the omnipresence of such
misuses and the ability of the approaches to detect them.

This work presents MUBENCH, a dataset of 89 API mis-
uses that we collected from 33 real-world projects and a sur-
vey. With the dataset we empirically analyze the prevalence
of API misuses compared to other types of bugs, finding that
they are rare, but almost always cause crashes. Further-
more, we discuss how to use it to benchmark and compare
API-misuse detectors.

CCS Concepts

eSoftware and its engineering — Software defect anal-
ysis; Software post-development issues;

Hoan A. Nguyen' Tien N. Nguyen' Mira Mezini"
Source Total Size Reviewed Misuse Crash
BucCLASSIFY 2,914 294 26 16
DEFECTS4J 357 357 14 12
1BuGs 390 390 56
QACRASHFIX 24 24 15 15
SOURCEFORGE 130 130 13 6
GiTHuB 2,660 78 3 2
SURVEY 17 17 12 5
Total 6,491 1,189 89 61

Table 1: API Misuses by Source

towards these goals, we present MUBENCH, a dataset of API
misuses that can be used to benchmark and compare API-
misuse detectors. We explored existing bug datasets, mined
projects from SOURCEFORGE and GITHUB, and conducted
a survey to collect 89 instances of API misuses. From this
sample, we created a taxonomy of API misuses and a dataset

2. Tool Selection Process
Literature: Reviewing Ground Concepts

SCAM 2017

Abstract—The ubiquity of smartph
capabilities and usage, make the secur
dously important. Unfortunately, desg
and privacy mechanisms, vulnerabilit

Research has shown that many °
insecure programming practices. How
dealt with a specific issue, making the
practitioners.

To promote secure programming p
related research, and identified av
Android-run devices and the security
their presence. In particular, we e
their corresponding smells, and we
be eliminated or mitigated during d
develop a lightweight static analysis {
to which it successfully detects sever
46000 apps hosted by the official An

I. INTRODUCT

A Machine-learning Approach for Classifying and
Categorizing Android Sources and Sinks

Siegfried Rasthofer & Steven Arzt
Secure Software Engineering Group
EC SPRIDE, Technische Universitit Darmstadt
{firstname.lastname } @ec-spride.de

Abstract—Today’s smartphone users face a security dilemma:
many apps they install operate on privacy-sensitive data, although
they might originate from developers whose trustworthiness is
hard to judge. Researchers have addressed the problem with
more and more sophisticated static and dynamic analysis tools
as an aid to assess how apps use private user data. Those tools,
however, rely on the manual configuration of lists of sources of
sensitive data as well as sinks which might leak data to untrusted
observers. Such lists are hard to come by.

We thus propose SUSI, a novel machine-learning guided
approach for identifying sources and sinks directly from the code
of any Android APL. Given a training set of hand-annotated
sources and sinks, SUSI identifies other sources and sinks in
the entire APL To provide more fine-grained information, SUSI
further categorizes the sources (e.g., unique identifier, location
information, etc.) and sinks (e.g., network, file, etc.).

For Android 4.2, SuSI identifies hundreds of sources and
sinks with over 92% accuracy, many of which are missed by
current information-flow tracking tools. An evaluation of about
11,000 malware samples confirms that many of these sources
and sinks are indeed used. We furthermore show that SuSI
can reliably classify sources and sinks even in new, previously
unseen Android versions and components like Google Glass or
the Chromecast APL

Eric Bodden
Secure Software Engineering Group
Fraunhofer SIT & Technische Universitit Darmstadt
eric.bodden@sit.fraunhofer.de

experience, they also create additional privacy concerns if used
for tracking or monitoring.

To address this problem, researchers have proposed various
analysis tools to detect and react to data leaks, both statically
[1]-[13] and dynamically [14]-[17]. Virtually all of these tools
are configured with a privacy policy, usually defined in terms
of lists of sources of sensitive data (e.g., the user’s current
location) and sinks of potential channels through which such
data could leak to an adversary (e.g., a network connection). As
an important consequence, no matter how good the tool, it can
only provide security guarantees if its list of sources and sinks
is complete. If a source is missing, a malicious app can retrieve
its information without the analysis tool noticing. A similar
problem exists for information written into unrecognized sinks.

This work focuses on Android. As we show, existing
analysis tools, both static and dynamic, focus on a handful of
hand-picked sources and sinks, and can thus be circumvented by
malicious applications with ease. It would be too simple, though,
to blame the developers of those tools. Android’s version 4.2,
for instance, comprises about 110,000 public methods, which
makes a manual classification of sources and sinks clearly
infeasible. Furthermore, each new Android version includes new
functionality (e.g., NFC in Android 2.3 or Restricted Profiles

positories

e Detectors

Iguyen’ Mira Mezini"

ster University®
Diastate.edu

ze Reviewed Misuse Crash

14 204 26 16
57 357 14 12
0 390 56
% 24 15 15
30 130 13 6
50 78 3 2
17 17 12 5
)1 1,189 89 61

. Misuses by Source

sent MUBENCH, a dataset of API
;0 benchmark and compare API-
red existing bug datasets, mined
GE and GITHUB, and conducted
ances of API misuses. From this
omy of API misuses and a dataset

2. Tool Selection Process
Literature: Reviewing Different Tools

866

IEEE TRANSACTIONS ON SOFTWARE ENGIN

COVERT: Compositional Analys

Inter-Ann Permiccinn | e:

2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications

AppCaulk: Data Leak Prevention by Injecting Targeted Taint Tracking Into

Android Apps

Julian Schiitte, Dennis Titze, and J. M. de Fuentes
{schuette,titze } @aisec.fraunhofer.de, jfuentes@inf.uc3m.es

Abstract

As Android is entering the business domain, leaks
of business-critical and personal information through
apps become major threats. Due to the context-
insensitive nature of the Android permission model,
information flow policies cannot be enforced by on-
board mechanisms. We therefore propose AppCaulk,
an approach to harden any existing Android app by in-
Jjecting a targeted dynamic taint analysis, which tracks
and blocks unwanted information flows at runtime.
Critical data flows are first discovered using a static
taint analysis and the relevant data propagation paths

To cope with information leaks, several approaches
have been proposed and some practically applicable
solutions exist. Most of them refer to container-based
approaches where either applications are wrapped in a
“security container” or domains are isolated at kernel
level (see [13], [4]). These approaches are however
context-free, as they do not keep track of individual
data flows but rather apply a perimeter security, either
at API or OS level.

Dynamic taint analysis, in contrast, monitors how data
is handled by an application and detects when an
unwanted flow from a specific data source (e.g., the
address book) to a specific sink (e.g., a socket) is

Universita Ca’ Foscari Venezia

2016 IEEE European Symposium on Security and Privacy

HornDroid: Practical and Sound Static Analysis
of Android Applications by SMT Solving

Stefano Calzavara

ralrzavara@daic unive it

Ilya Grishchenko
CISPA, Saarland University

orichchenkn@ e uni.canrland de

Matteo Maffei
CISPA, Saarland University

maffei@cc uni-caariand de

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

Composite Constant Propagation: Application to
Android Inter-Component Communication Analysis

Damien Octeau'?, Daniel Luchaup'?, Matthew Dering?, Somesh Jha', and Patrick McDaniel®
' Department of Computer Sciences, University of Wisconsin
*Department of Computer Science and Engineering, Pennsylvania State University
3CyLab, Carnegie Mellon University

octeau® cs. wisc.edu, luchaup @ andrew.cmu.edu, dering@cse psu.edu, fha®cs.wisc.edu, medaniel® cse.pyuedu

Abstract—Many program analyses require statically inferring
the ible values of posite types. However, current ap-
pruuchu cither do not account for correlations between object
fields or do so in an ad hoc manner. In this paper, we introduce
the problem of posit jon. We develop the
first generic solver that infers all poulblc values of complex
objects in an interprocedural, flow and mnltxl-scnsldn man-

ner, taking field correlati into C

P

such as information flow analysis [22], [24], [38), [41], patch
generation for privilege escalation vulnerabilities [42] and
detection of stealthy behavior [18).

In order to infer facts about interactions between compo-
nents, we need to find all possible values of the fields of
ICC objects at program points where message passing occurs.
Unfortunately. existing studies of application interfaces are

2. Tool Selection Process
Literature: Reviewing Robustness Of Tools

2016 IEEE European Symposium on Security and Privacy

HornDroid: Practical and Sound Static Analysis
of Android Applications by SMT Solving

Matteo Maffei
CISPA, Saarland University

maffei@cc uni-caariand de

10 Calzavara
‘a’ Foscari Venezia
n@daic unive it

Ilya Grishchenko
CISPA, Saarland University

orichchenkn@ e uni.canrland de

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

mposite Constant Propagation: Application to
'0id Inter-Component Communication Analysis

ien Octeau'?, Daniel Luchaup'~, Matthew Dering®, Somesh Jha', and Patrick McDaniel®

' Department of Computer Sciences, University of Wisconsin
*Department of Computer Science and Engineering, Pennsylvania State University
3CyLab, Carnegie Mellon University

octeau® cs. wisc.edu, luchaup @ andrew.cmu.edu, dering@cse psu.edu, fha®cs.wisc.edu, medaniel® cse.pyuedu

866
RUHR-UNIVERSITAT BOCHUM
Horst Gortz Institute for IT Security
2014 Technical Report TR-HGI-2016-003
App(
Evaluating Analysis Tools for Android Apps: Status Quo and
Robustness Against Obfuscation
Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy, Giorgio
Giacinto, Thorsten Holz

As Anc
of busine. Chair for Systems Security
apps bec
insensitivi
informatic
board me
an approc
Jjecting a
and bloci
Critical a
taint anal

‘Many program analyses require statically inferring
values of composite types. However, current ap-
[ver do not account for correlations between object
o in an ad hoc manner. In this paper, we introduce
of posit prop jon. We develop the
solver that infers all possible values of complex
v interprocedural, flow and context-sensitive man-
lield correlati into t. C i

1%

such as information flow analysis [22], [24], [38], [41], patch
generation for privilege escalation vulnerabilities [42] and
detection of stealthy behavior [18).

In order to infer facts about interactions between compo-
nents, we need to find all possible values of the fields of
ICC objects at program points where message passing occurs.
Unfortunately. existing studies of application interfaces are

2. Tool Selection Process
Literature: Major Contribution

ty and Privacy
432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 43, NO.8, JUNE2017

A Taxonomy and Qualitative Comparison of -
. . . itatic Analysis
Program Analysis Techniques for Security i1 Solving
Assessment of Android Software

CISPA, Saarland University

ApD(Alireza Sadeghi, Hamid Bagheri, Member, IEEE, Joshua Garcia, and Sam Malek, Member, IEEE P et

Abstract—In parallel with the meteoric rise of mobide software, we are witnessing an alarming escalation in the number and
) sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing
fova research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This paper
contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have carefully

followed the systematic literature review process, and analyzed the results of more than 300 research papers, resulting in the most ltl() 1. "\ p p l Ication 1o

; comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of the research literature nm LlIli "lli()n f’\I‘l'l] \'\'i\'
9 nas revealed patterns, trends, and gaps in the existing literature, and underdined key challenges and opportunities that will shape the Cc ‘ S DAL
focus of future research efforts.
y S¢
\ ' Index Terms—Taxonomy and survey, security assessment, android platform, program analysis mversit
usi 18, Penr
+ Universit
1 INTRODUCTION nfo

ANDRL)!D, with well over a million apps, has become one 2008. These research efforts have investigated the Android E,
nd blo of the dominant mobile platforms [1]. Mobile app mar- security threats from various perspectives and are scattered or
Critical d kets, such as Android Google Play, have created a funda- across several research communities, which has resulted in a en
taint ana mental shift in the way software is delivered to consumers, body of literature that is spread over a wide variety of

2. Tool Selection Process
Focus On Vulnerability Detection

ADDICTED, Amandroid, ApkCombiner, App-Ray, AppAudit, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,
AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buhov, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COPES, COVERT,
CredMiner, CRePE, CryptoLint, Desnos, DexDiff, DroidAlarm, DroidChecker,
DroidCIA, DroidGuard, DroidRay, Droidsearch, Enck, Epicc, FineDroid,
-lowdroid, Gallo, Geneiatakis, Grab’nRun, Harehunter, HornDroid, IcCTA,
PClnspection, IVDroid, Juxtapp, Kantola, KLD, Lintent, Lu, MalloDroid,
Matsumoto, Mutchler, NoFrak, Nolnjection, Onwuzurike, PaddyFrog,
PatchDroid, PClLeaks, PermCheckTlool, PermissionFlow, Poeplau, Pscout,
QUIRE, Ren, SADroid, SCanDroid, Scoria, SecUP, SEFA, Smith, SMV-
HUNTER, STAMBA, Stowaway, SUPOR, TongxinLi, Vecchiato, VetDroid,

WeChecker, Woodpecker, Zuo

2. Tool Selection Process
- Not Found

Amandroid, ApkCombiner, App-Ray, AppAudit, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,

AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buhov, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COVERT,
CredMiner, CRePE, Desnos, DexDiff, DroidAlarm, DroidChecker,

DroidCIA, DroidGuard, DroidRay, Droidsearch, Enck, Epicc, FineDroid,
-lowdroid, Gallo, Geneiatakis, Grab’nRun, Harehunter, HornDroid, IcCTA,
PClnspection, IVDroid, Juxtapp, Kantola, KLD, Lintent, Lu, MalloDroid,
Matsumoto, Mutchler, NoFrak, Nolnjection, Onwuzurike, PaddyFrog,
PatchDroid, PClLeaks, PermissionFlow, Poeplau, Pscout,
QUIRE, Ren, SADroid, SCanDroid, Scoria, SecUP, SEFA, Smith, SMV-
HUNTER, STAMBA, Stowaway, SUPOR, TongxinLi, VetDroid,

WeChecker, Woodpecker, Zuo

2. Tool Selection Process
- No Tools

Amandroid, ApkCombiner, App-Ray, AppAudit, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,

AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COVERT,
CredMiner, CRePE, DexDiff, DroidAlarm, DroidChecker,
DroidCIA, DroidGuard, DroidRay, Droidsearch, Enck, Epicc, FineDroid,
~lowdroid, Geneiatakis, Grab’nRun, Harehunter, HornDroid, ICCTA,
PClnspection, IVDroid, Juxtapp, Kantola, KLD, Lintent, Lu, MalloDroid,
Matsumoto, NoFrak, Nolnjection, PaddyFrog,
PatchDroid, PClLeaks, PermissionFlow, Poeplau, Pscout,
QUIRE, SADroid, SCanDroid, Scoria, SecUP, SEFA, Smith, SMV-
HUNTER, Stowaway, SUPOR, VetDroid,

WeChecker, Woodpecker, Zuo

2. Tool Selection Process
- Not Reachable Researcher

Amandroid, ApkCombiner, App-Ray, AppAudit, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,

AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COVERT,
CredMiner, CRePE, DexDiff, DroidAlarm, DroidChecker,
DroidCIA, DroidGuard, DroidRay, Droidsearch, Enck, Epicc, FineDroid,
~lowdroid, Geneiatakis, Grab’nRun, Harehunter, HornDroid, ICCTA,
PClnspection, [VDroid, Juxtapp, KLD, Lintent, MalloDroid,
Matsumoto, NoFrak, Nolnjection, PaddyFrog,
PatchDroid, PClLeaks, PermissionFlow, Pscout,
Scoria, SecUP, SEFA, Smith,
Stowaway, SUPOR, VetDroid,

WeChecker, Woodpecker, Zuo

2. Tool Selection Process
- Access Refused

Amandroid, ApkCombiner, App-Ray, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,
AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COVERT,
CredMiner, CRePE, DexDiff, DroidAlarm, DroidChecker,
DroidCIA, DroidGuard, DroidRay, Enck, Epicc, FineDroid,
Flowdroid, Geneiatakis, Grab’nRun, Harehunter, HornDroid, ICCTA,

IVDroid, Juxtapp, KLD, Lintent, MalloDroid,

Matsumoto, NoFrak, Nolnjection, PaddyFrog,

PatchDroid, PClLeaks, PermissionFlow, Pscout,
Scoria, SecUP, SEFA, Smith,

Stowaway, SUPOR, VetDroid,
WeChecker, Woodpecker, Zuo

2. Tool Selection Process
- Unresponsive Researcher

Amandroid, ApkCombiner, AppCaulk,
AppGuard, Aquifer, ASM,
Bagheri,
ConDroid, COVERT,
CRePE, DexDIff,
Enck, Epicc,
Flowdroid, Geneiatakis, Grab’nRun, HornDroid, [ccTA,
Lintent, MalloDroid,
NoFrak,
Pscout,
Smith,

Stowaway,

2. Tool Selection Process
+ Responsive Researcher

Amandroid, ApkCombiner, AppCaulk,
AppGuard, Aquifer, ASM,
Bagheri,
ConDroid, COVERT,
CRePE, DexDIff,
Enck, Epicc,
Flowdroid, Geneiatakis, Grab’nRun, HornDroid, [ccTA,
Lintent, MalloDroid,
NoFrak,
Pscout,
Smith,

Stowaway,

2. Tool Selection Process
Focus On Information Disclosure

Amandroid,

ASM,

ConDroid,

CRePE, DexDIff,
Geneiatakis, Grab’nRun,

Lintent, MalloDroid,

NoFrak,
Pscout,

Stowaway,

2. Tool Selection Process
And The Winners Are...

ApkCombiner, AppCaulk,
AppGuard, Aquifer,
Bagheri,
COVERT,
DexDiff,
Enck, Epicc,
Flowdroid, HornDroid, IccTA,

Smith,

2. Tool Selection Process
... But, Remove Tools That Cannot Be Setup

ApkCombiner, AppCaulk,
AppGuard,
Bagheri,
COVERT,
Enck, Epicc,
Flowdroid, HornDroid, IccTA,

Smith,

2. Tool Selection Process
... And Those That Cannot Be Analysed

COVERT,

Epicc,
Flowdroid, HornDroid, IccTA,

3. Selected Tools In A Nutshell
In A Nutshell — Pretty Much The Same

Type: Static & Formal Static Static Static Static & Formal

Artefact: | Manifest Manifest Manifest Manifest Code (reflective)
Code (native) Layout

Data Structure: Call Graph Call Graph Call Graph Call Graph N/A
CFG CFG CFG CFG
ICFG ICFG ICFG ICFG
Code Jimple Jimple Jimple Jimple N/A
Representation
Sensitivity Flow Flow Flow Flow N/A
Context Context Context Context

[1] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. “A Taxonomy and qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software”

3. Selected Tools In A Nutshell
Results Hard To Find, To Read And 1o Understand...

COVERT
apksToTest xml file

Intent Spoofing
App org.cert.sendsms puts data (retrieved from an Explicit Intent (Component
= MainActivity)) on an unsafe sink (SMS_MMS) in one of its components
(org.cert.sendsms.MainActivity). A malicious app can send a sensitive data from this
channel.

APP

org.cert.sendsms

COMPONENT
org.cert.sendsms.MainActivity

INTENT
Explicit Intent (Component = MainActivity)
i2

METHOD
org.cert.sendsms.MainActivity: void
onActivityResult(int,int,android.content.Intent)

SINK_TYPE
SMS_MMS

3. Selected Tools In A Nutshell
Results Hard To Find, To Read And To Understand...

Running data flow analysis...

Found dex file 'classes.dex' with 456 classes in '/Users/timospring/Desktop/droid-Security-Thesis/apk_sample/ Fq()\Aj(jr()Kj
validation_ apk/SendSMS.apk'

[Call Graph] For information on where the call graph may be incomplete, use the verbose option to the cg phase. (3()r153()|63 C)LJtF)LJt
[Spark] Pointer Assignment Graph in 0.0 seconds.

[Spark] Type masks in 0.0 seconds.

[Spark] Pointer Graph simplified in 0.0 seconds.

[Spark] Propagation in @0.1 seconds.

[Spark] Solution found in @.1 seconds.

Callback analysis done.

Found 1 layout controls in file res/layout/activity_main.xml
[Call Graph] For information on where the call graph may be incomplete, use the verbose option to the cg phase.
[Spark] Pointer Assignment Graph in 0.0 seconds.

[Spark] Type masks in 0.0 seconds.

[Spark] Pointer Graph simplified in 0.0 seconds.

[Spark] Propagation in ©0.@ seconds.

[Spark] Solution found in 0.0 seconds.

Running incremental callback analysis for 1 components...
Incremental callback analysis done.

Analysis has run for 6.296909903 seconds

3. Selected Tools In A Nutshell
Results Hard To Find, To Read And To Understand...

PendingIntent;Landroid/app/PendingIntent;)V:NO LEAK

2018-23-20 17:23:29.525 [main] INFO com.horndroid.z3.FSEngine - 11 [REF) Test if register @ leaks at Horndroid
line 11 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the | f1
sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/ -C)QJ e

PendingIntent;Landroid/app/PendingIntent;)V:POTENTIAL LEAK

2018-23-28 17:23:31.333 [main] INFO com.horndroid.z3.FSEngine - 12 [REF] Test if register 1 leaks at
line 11 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the
sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/
PendingIntent;Landroid/app/PendingIntent;)V:POTENTIAL LEAK

2018-23-28 17:23:31.50@ [main] INFO com.horndreid.z3.FSEngine - 13 [REF) Test if register 2 leaks at
line 11 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the
sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/

2918-23-20 17:23:33.623 [main] INFO com.horndroid.z3.FSEngine - 14 [REF] Test if register 3 leaks
line 11 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity;

sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/
Pendln_Intent'Landr01d/a--/Pendln Intent')V POTENTIAL LEAK

line 11 in method sendSMSMessage(LJava/lang/Strlng,)V of the class Lorg/cert/sendsms/MalnAct1v1ty, to the
sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/
PendingIntent;Landroid/app/PendingIntent;)V:NO LEAK

2018-23-28 17:23:33.97@ [main] INFO com.horndreid.z3.FSEngine - 16 [REF) Test if register 5 leaks at
line 11 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the
sink sendTextMessage(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/
PendingIntent;Landroid/app/PendingIntent;)V:NO LEAK

2918-23-20 17:23:36.66@ [main] INFO com.horndroid.z3.FSEngine - 17 Test if register 6 leaks at line 43
in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the sink
printStackTrace()V:NO LEAK

2018-23-28 17:23:48.795 [main] INFO com.horndroid.z3.FSEngine - 18 [REF] Test if register é leaks at
line 43 in method sendSMSMessage(Ljava/lang/String;)V of the class Lorg/cert/sendsms/MainActivity; to the
sink printStackTrace()V:NO LEAK

2918-23-20 17:23:40.998 [main] INFO com.horndroid.z3.FSEngine - 19 Test if register 1 leaks at line 3@
in method onActivityResult(IILandroid/content/Intent;)V of the class Lorg/cert/sendsms/MainActivity; to
the sink v(Ljava/lang/Strinag:Ljava/lanqg/String:)I:NO LEAK

3. Selected Tools In A Nutshell
[t’'s All About Sources And Sinks

Sensitive Data:

Sources e.g. UD

\ L eak

getDeviceld() sendTextMessage(uid)

n Is it only a question of who has the best sources and sinks list?

3. Selected Tools In A Nutshell

Own Implementation Runs Tools And Parses Output

Component: android.util.Log

Class: org.cert.sendsms.ButtonlListener
Method: void onClick(android.view.View)
Line: 25

Detected by: flowdroid, 1ccta

n Problem: Only class and method are reported by all tools

. Case Study: SendSMS App

Run tools on app with known vulnerabillities

o SendsSMS.apk with known inter-app communication
vulnerabllities

» GGets the UID and sends it over SMS and writes it to log file

4. Case Study: SendSMS App
App Leaks The UID Over SMS And To The Log File

Component: Button1Listener

onClick(View argo)

23 String uid = tManager.getDeviceld(); // SOURCE
25 Log.i("SendSMS: ", "Deviceld "+uid); // SINK
26 this.act.startActivityForResult(i, 0); // SINK

Component: MainActivity
sendSMSMessage(String message)

52 smsManager.sendTextMessage('"1234567890", message); //SINK

4. Case Study: SendSMS App
Especially HornDroid Seems To “Over-Report”

Log.i(uid)
Flowdroid ()
ccTA @
HomDroid (@)
COVERT ()
cs ()

True Positives
startActivity(Intent)

_NONON N

sendSMS(uid)

Log.v(String)

OO0 @00

False Positives

Log.i(String)

OO0 @00

Log.i(String)

OO0 @00

4. Case Study: SendSMS App
Flowdroid Might Be Biased

True Positives
Attention:

Log.i(uid) startActivity(Intent) sendSMS(uic I\/Iight be biased! Same tring)

Flowdroid m creators as DroidBench.)
Claim 86%

to have

ccA @ O O precision. ’
HomDroid (@) O O O O O
COVERT () O (O O O
cs (O o C O O O

4. Case Study: SendSMS App
Vulnerability Detected, But Not As Precise As Others

Report:
onActivityResult(int, int, Intent)
37 sendSMSMessage(data.getExtras().getString("secret"));

Instead of;
sendSMSMessage(String message)

52 smsManager.sendTextMessage('1234567890", null, message, null, null); //SINK

W —/ W A4 A4

COVERT () O O O O
cs O O O O O

4. Case Study: SendSMS App
HornDroid Is The Only Tool Reporting False Positives

Report:

onActivityResult(int, int, Intent)

36 Log.v("In SendSMS: ", "Data
received");

40 Log.i("In SendSMS: ", "Data
received"):

44 Log.i("In SendSMS: ", "No data
received”);

vuveni U U

cs () O

False Positives

Log.v(String) Log.i(String) Log.i(String)

O O
O O
O O

(& o o]

O O
O O
O O

4. Case Study: SendSMS App
There Are Differences In What The Tools Report

* FlowDroid and IccTA found all leaks without false alarm
* HornDroid found most leaks, but reports many false positives

 COVERT and IC3 only found part of the leaks

n Problem: Analysis for false positives not scalable!

5. Benchmarking Concept
How [0 Include Both Worlds

Small scale Large scale
qualitative quantitative
« DroidBench dataset « F-Droid dataset (~2.6k
(~30 apps) apps)
 Manually check for e Automatically analyse
false positives and number of detections

false negatives and matchings

0. Lessons Learned So Far
It’s Tricky!

Hundreds of tools, but only few are actually
avallable and can be setup

Tools are not user-friendly and results poorly
documented

All of them claim to be the best
- —we’'ll see about that ...

/. Outlook
What's Next?

* Fine tune automatic analysis (refactoring)

« Check DroidBench dataset

* Run automatic analysis on F-droid dataset
» Evaluation of results (quantitative)

* Draw conclusions

