
Threats to validity in TDD
research

Timm Gross

Interviews about testing practices
Small development team at a swiss university

Developing mostly integration solutions

5 developers, 3 interviews each in 1 hour

Focus on bug fixes

Method: Ethnographically informed qualitative expert interviews analyzed with the
grounded theory coding technique (Flick, 2009)

2

Interviews: Why do you test?
Insurance of quality

Future maintainability

Dealing with complexity

Confidence in solutions

Documentation of assumptions

Passive knowledge transfer

Enjoyment
3

D2: Especially now or in the
future when we have fresh
software engineers, it will be
good to influence them
positively.

Interviews: Why do you test?
Insurance of quality

Future maintainability

Dealing with complexity

Confidence in solutions

Documentation of assumptions

Passive knowledge transfer

Enjoyment
4

Quality related

Non-quality related

Interviews: Why do you not test?
Problem: Social desirability bias

External dependencies

Configuration

Inadequate existing testing suites

Shortcuts

5

D4: Testing of infrastructure
makes no sense because this
type of tests are hopefully done
by the vendor of the product. [...]
Analog: Wir testen nicht ob Java
korrekt sortieren kann.

Interviews: Conclusion
Interviewees view testing as both

● A tool to achieve better results (quality related aspects)
● A tool to to structure work and to collaborate (non-quality related aspects)

Developers: Testing is important (in certain cases)

Lesson learned: social desirability bias in expert interviews

Could we use TDD to better leverage the benefits of testing?

6

Test driven development
“No studies have categorically demonstrated the difference between TDD and any
of the many alternatives in quality, productivity, or fun. However, the anecdotal
evidence is overwhelming, and the secondary effects are unmistakable.”

- B. K. Beck & Date, 2002

18 years later: still true

7

State of research
6 meta-analyses

Quality: no difference - improvement

Productivity: inconclusive - degradation

Inconsistencies:

● Comparisons: degree of iterativeness (waterfall, iterative test last, etc.)
● Rigor (statistical methods, experiment set-up, etc.)
● Relevance (topical, realistic setting, etc.)
● Participants (skill level)
● Context (academic vs. industrial)

8

Application in the “Wild”
Borle et al. (2018): Analyses of 256,572 public GitHub projects

● only 16.1% of GitHub repositories contained test files
● only 0.8% strictly practiced TDD

 Beller et al. (2017): Observation of 2,443 software developers over 2.5 years

● 43% of all projects contained test files
● only 1.7% of all developers followed a strict definition of TDD

9

Summary

10

1. Anecdotal evidence from “champions for TDD” is overwhelming

2. Research on the effects of TDD is inconclusive

3. The practice of TDD in real life projects is very limited

Literature analysis of threats to validity
Goal:

● Insight into the discrepancy between anecdotal evidence and literature
findings

● Identify problems that hinder the application of the research in industrial
contexts

Method: hermeneutic literature review

Focus: not results but threats to validity

11

Literature analysis: Data collection
Identification of research papers

● Web search
● Snowball approach
● Literature reviews

Inclusion criteria:

● Only TDD
● Experiments (case studies), statistical analysis, qualitative research, literature

reviews
● Recent studies (2009 onwards)
● High quality & explicit threats to validity 12

Literature analysis: Methodology
Hermeneutical approach

● Identification of next paper
● In depth analysis of set-up, execution, conclusion and threats to validity
● Adding to and sharpening of a list of threats to validity
● Repeat until no more new categories emerge (15 papers & 7 literature

reviews)

13

14

Literature analysis: Findings
● Participant choice

15

Participants by context

16

TDD experience

17

Literature analysis: Findings
● Participant choice
● Task selection

18

Task selection

19

Greenfield vs. brownfield projects

20

Literature analysis: Findings
● Participant choice
● Task selection
● Context
● Quality

○ Lack of attention to internal code quality

21

Internal code quality metrics

22

Literature analysis: Findings
● Participant choice
● Task selection
● Context
● Quality

○ Lack of attention to internal code quality
○ Lack of attention to test quality
○ Productivity (short term vs long term)

● Length of observation
● Comparisons
● Lack of qualitative research
● TDD on a spectrum
● Inclusion of TDD in company policies

23

Literature analysis: Conclusion
Often TDD is understood through a mechanistical lens

Analogous the medical studies:

● Problem: Produce Code with high quality and high productivity
● Treatments: Application of TDD vs. Waterfall
● Analysis: Comparison between the treatments

BUT: We argue that TDD is not only a treatment to the problem.

It is also a way for developers to structure their work and their working together

24

Conclusion
TDD research is inconclusive

TDD advocates defend it strongly

TDD is not as widely applied as expected

Interviewed developers put equal emphasis on quality related and non-quality
related factors

TDD research often has a very mechanistical lens and is in general unconcerned
with non-quality related aspects

25

Conclusion
We argue that further study of the non-quality related aspects of TDD might be
worthwhile to close the gap between research and anecdotal evidence.

List of threats to validity to account for

Analog: Computer supported collaborative work

26

27

Threats to validity

