
Towards Detecting Inconsistent
Comments in Java Source Code
Automatically*

Nataliia Stulova, Arianna Blasi, Alessandra Gorla, Oscar Nierstrasz

Software Composition Seminar
22 September 2020

*to appear in the
NIER track of
SCAM’20

Problem: commits introducing inconsistencies
 /**
 * Checks if one of the graphs is from unsupported graph type and throws
 * IllegalArgumentException if it is. The current unsupported types are
 * graphs with multiple-edges.
 *
 * @param graph1
 * @param graph2
 *
 *
 * @throws IllegalArgumentException
 */
 protected static void assertUnsupportedGraphTypes(
 Graph g1,
 Graph g2)

 throws IllegalArgumentException
 {...} 2

Problem: commits introducing inconsistencies
 /**
 * Checks if one of the graphs is from unsupported graph type and throws
 * IllegalArgumentException if it is. The current unsupported types are
 * graphs with multiple-edges.
 *
 * @param graph1
 * @param graph2
 *
 *
 * @throws IllegalArgumentException
 */
 protected static void assertUnsupportedGraphTypes(
- Graph g1,
- Graph g2)
+ Graph g)
 throws IllegalArgumentException
 {...} 3

b4805f5

March 2006

code and comment
diverged!..

https://github.com/jgrapht/jgrapht/commit/b4805f5d86b128879dfab0c1dd754e481a6373b2

Problem: commits introducing inconsistencies
 /**
 * Checks if one of the graphs is from unsupported graph type and throws
 * IllegalArgumentException if it is. The current unsupported types are
 * graphs with multiple-edges.
 *
-* @param graph1
-* @param graph2
+* @param g
 *
 * @throws IllegalArgumentException
 */
 protected static void assertUnsupportedGraphTypes(
 Graph g)
 throws IllegalArgumentException
 {...}

4

b4805f5

a68071b
...

March 2006

November 2013

… still inconsistent
7.5 years later

https://github.com/jgrapht/jgrapht/commit/b4805f5d86b128879dfab0c1dd754e481a6373b2
https://github.com/jgrapht/jgrapht/commit/a68071b429bd54a8b2c7cb0da3c938088e80ad9a

Solution idea: detect inconsistencies with NLP

Step 0: get the diff of the change

Step 1: extract natural language cues from both code and comments and store as Bag-of-Words (BoW)

Step 2: measure BoW similarities

5

comment [1:illeg,1:argument,1:throw,1:one,1:except,1:check,
 1:unsupport, 1:type,2:graph]

WMD similarity

code v.0
[1:illeg,1:argument,1:throw,1:void,1:assert,1:except,
 1:unsupport,1:type,4:graph,1:first,1:second] 70%

code v.1
[1:illeg,1:argument,1:throw,1:void,1:assert,1:g,1:except,
 1:unsupport,1:type,2:graph] 66% (-4%)

Word Mover’s
Distance

stems

Implementation prototype

6

upDoc.JAVA
v.0

Parser
.JAVA

v.1

Mapper

Change
Extractor

Change
Analyzer

Fix
Advisor

Report

Fix
Suggestions

Implementation details

Implemented

● Parser: processes Java source code
● Mapper:

○ produces bag-of-words
representations for code and
comments

○ relates them based on
similarity measures: cosine
similarity, word mover’s
distance

7

Working on

● Change extractor: work with
AST-based diffs for clear code
snippet scopes

● Change analyzer: combine
information from the mapping and
from the diff

● Fix advisor: notify the programmer
if the comment needs more
changes

Preliminary evaluation of mapping accuracy

● get public inconsistencies dataset from ICPC’19

● take first 50 commits and filter out fixes not detected (yet) by upDoc

● analyze 67 fixes in 20 commits that remained after filtering

Results:

● For 50 fixes the similarity scores improve as expected

● For 10 fixes the similarity scores did not change

● For 7 fixes upDoc reports unexpected decreases in the similarity scores

8

upDoc ’s mapping between
methods and doc comments
accurately reflects
inconsistencies in 90%

of the
cases!

Evaluation highlights 1/3

Inconsistency fix, correctly detected:

-* This automatically calls {@link #escapeHTML} so make it safe for HTML too.
+* This automatically calls {@link #sanitizeForHtml} so make it safe for HTML too.
+*
+* @param string
+* @return the sanitized string or null (if the parameter was null).
 */
 public static String sanitizeForJs(String str){...}

9

new version has better similarity score
than old version

Evaluation highlights 2/3

Readability fix, correctly skipped:

-* Invoked when a refresh of current IndexReaders is detected as necessary.
-* The implementation is blocking to maximize reuse of a single IndexReader (better for buffer usage,
-* caching, ..) and to avoid multiple threads to try and go opening the same resources at the same time.
-* @return the refreshed IndexReader
+* Invoked when a refresh of current {@code IndexReader}s is detected necessary.
+*
+* The implementation is blocking to maximize reuse of a single {@code IndexReader} (better for buffer usage,
+* caching, ..) and to avoid multiple threads trying and opening the same resources at the same time.
+*
+* @return the refreshed {@code IndexReader}
+*/
 private synchronized IndexReader refreshReaders() {

10

old and new versions have same
similarity scores

Evaluation highlights 3/3

Inconsistency fix, NOT correctly detected:

 * Fetch an {@link InputStream} for each {@link Resource} in this {@link ResourceList}, pass the
 * {@link InputStream} to the given {@link InputStreamConsumer}, then close the {@link InputStream} after the
-* {@link InputStreamConsumer} returns.
+* {@link InputStreamConsumer} returns, by calling {@link Resource#close()}.
 ...
 public void forEachInputStreamThenClose(final InputStreamConsumer inputStreamConsumer,
 final boolean ignoreIOExceptions) {

11

old version has a better similarity score
than the new, fixed version

